Advanced 3D Printing Biomaterials

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983).

Deadline for manuscript submissions: 30 October 2024 | Viewed by 7741

Special Issue Editors

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Interests: biomaterials; additive manufacturing; materials genome engineering
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
Interests: 3D/4D printing; biomaterials; biomimetics; multifunctional materials; designer materials; functionally graded materials; biomechanics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou, China
Interests: additive manufacturing; biomedical metals; degradation behavior; porous structure
Special Issues, Collections and Topics in MDPI journals
Institute of Engineering Technology, University of Science and Technology Beijing, Beijing, China
Interests: metallic biomaterials; titanium; powder metallurgy; additive manufacturing

Special Issue Information

Dear Colleagues,

Three-dimensional printing provides unprecedented opportunities for fabricating complex biomedical devices such as implants, scaffolds, and regenerative medicines. The advantages of using 3D printing are numerous, including the ability to create customized geometries, interconnected porous structures, functionally graded materials, co-culture of multiple cells, and incorporated medicines. Recently, many 3D printing approaches have been further developed to tackle the limitations in tissue regeneration. Further, many novel biomaterials have been developed to enable their use with 3D printing methods. The aim of this Special Issue is to discuss advanced 3D printing biomaterials including but not limited to metals, ceramics, polymers, and their composites. Both research and review articles focusing on 3D printing in biomedical applications are welcome.

Dr. Yageng Li
Dr. Mohammad J. Mirzaali
Dr. Youwen Yang
Dr. Wei Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing
  • biomaterials
  • tissue regeneration
  • scaffold
  • implants
  • medical devices

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5700 KiB  
Article
3D Printing of a Porous Zn-1Mg-0.1Sr Alloy Scaffold: A Study on Mechanical Properties, Degradability, and Biosafety
by Xiangyu Cao, Xinguang Wang, Jiazheng Chen, Xiao Geng and Hua Tian
J. Funct. Biomater. 2024, 15(4), 109; https://doi.org/10.3390/jfb15040109 - 18 Apr 2024
Viewed by 1028
Abstract
In recent years, the use of zinc (Zn) alloys as degradable metal materials has attracted considerable attention in the field of biomedical bone implant materials. This study investigates the fabrication of porous scaffolds using a Zn-1Mg-0.1Sr alloy through a three-dimensional (3D) printing technique, [...] Read more.
In recent years, the use of zinc (Zn) alloys as degradable metal materials has attracted considerable attention in the field of biomedical bone implant materials. This study investigates the fabrication of porous scaffolds using a Zn-1Mg-0.1Sr alloy through a three-dimensional (3D) printing technique, selective laser melting (SLM). The results showed that the porous Zn-1Mg-0.1Sr alloy scaffold featured a microporous structure and exhibited a compressive strength (CS) of 33.71 ± 2.51 MPa, a yield strength (YS) of 27.88 ± 1.58 MPa, and an elastic modulus (E) of 2.3 ± 0.8 GPa. During the immersion experiments, the immersion solution showed a concentration of 2.14 ± 0.82 mg/L for Zn2+ and 0.34 ± 0.14 mg/L for Sr2+, with an average pH of 7.61 ± 0.09. The porous Zn-1Mg-0.1Sr alloy demonstrated a weight loss of 12.82 ± 0.55% and a corrosion degradation rate of 0.36 ± 0.01 mm/year in 14 days. The Cell Counting Kit-8 (CCK-8) assay was used to check the viability of the cells. The results showed that the 10% and 20% extracts significantly increased the activity of osteoblast precursor cells (MC3T3-E1), with a cytotoxicity grade of 0, which indicates safety and non-toxicity. In summary, the porous Zn-1Mg-0.1Sr alloy scaffold exhibits outstanding mechanical properties, an appropriate degradation rate, and favorable biosafety, making it an ideal candidate for degradable metal bone implants. Full article
(This article belongs to the Special Issue Advanced 3D Printing Biomaterials)
Show Figures

Figure 1

15 pages, 5312 KiB  
Article
An Anti-Oxidative Bioink for Cartilage Tissue Engineering Applications
by Xin Chen, Mengni Yang, Zheng Zhou, Jingjing Sun, Xiaolin Meng, Yuting Huang, Wenxiang Zhu, Shuai Zhu, Ning He, Xiaolong Zhu, Xiaoxiao Han and Hairong Liu
J. Funct. Biomater. 2024, 15(2), 37; https://doi.org/10.3390/jfb15020037 - 2 Feb 2024
Viewed by 1756
Abstract
Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as [...] Read more.
Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future. Full article
(This article belongs to the Special Issue Advanced 3D Printing Biomaterials)
Show Figures

Figure 1

21 pages, 7146 KiB  
Article
Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology
by Long Chao, Yangdong He, Jiasen Gu, Deqiao Xie, Youwen Yang, Lida Shen, Guofeng Wu, Lin Wang and Zongjun Tian
J. Funct. Biomater. 2023, 14(1), 28; https://doi.org/10.3390/jfb14010028 - 3 Jan 2023
Cited by 5 | Viewed by 1951
Abstract
The mechanical properties and permeability properties of artificial bone implants have high-level requirements. A method for the design of trabecular-like porous structure (TLPS) with mixed porosity is proposed based on the study of the mechanical and permeability characteristics of natural bone. With this [...] Read more.
The mechanical properties and permeability properties of artificial bone implants have high-level requirements. A method for the design of trabecular-like porous structure (TLPS) with mixed porosity is proposed based on the study of the mechanical and permeability characteristics of natural bone. With this technique, the morphology and density of internal porous structures can be adjusted, depending on the implantation requirements, to meet the mechanical and permeability requirements of natural bone. The design parameters mainly include the seed points, topology optimization coefficient, load value, irregularity, and scaling factor. Characteristic parameters primarily include porosity and pore size distribution. Statistical methods are used to analyze the relationship between design parameters and characteristic parameters for precise TLPS design and thereby provide a theoretical basis and guidance. TLPS scaffolds were prepared by selective laser melting technology. First, TLPS under different design parameters were analyzed using the finite element method and permeability simulation. The results were then verified by quasistatic compression and cell experiments. The scaling factor and topology optimization coefficient were found to largely affect the mechanical and permeability properties of the TLPS. The corresponding compressive strength reached 270–580 MPa; the elastic modulus ranged between 6.43 and 9.716 GPa, and permeability was 0.6 × 10−9–21 × 10−9; these results were better than the mechanical properties and permeability of natural bone. Thus, TLPS can effectively improve the success rate of bone implantation, which provides an effective theory and application basis for bone implantation. Full article
(This article belongs to the Special Issue Advanced 3D Printing Biomaterials)
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 2304 KiB  
Review
Inflammation Responses to Bone Scaffolds under Mechanical Stimuli in Bone Regeneration
by Junjie Wang, Bo Yuan, Ruixue Yin and Hongbo Zhang
J. Funct. Biomater. 2023, 14(3), 169; https://doi.org/10.3390/jfb14030169 - 21 Mar 2023
Cited by 1 | Viewed by 1927
Abstract
Physical stimuli play an important role in one tissue engineering. Mechanical stimuli, such as ultrasound with cyclic loading, are widely used to promote bone osteogenesis; however, the inflammatory response under physical stimuli has not been well studied. In this paper, the signaling pathways [...] Read more.
Physical stimuli play an important role in one tissue engineering. Mechanical stimuli, such as ultrasound with cyclic loading, are widely used to promote bone osteogenesis; however, the inflammatory response under physical stimuli has not been well studied. In this paper, the signaling pathways related to inflammatory responses in bone tissue engineering are evaluated, and the application of physical stimulation to promote osteogenesis and its related mechanisms are reviewed in detail; in particular, how physical stimulation alleviates inflammatory responses during transplantation when employing a bone scaffolding strategy is discussed. It is concluded that physical stimulation (e.g., ultrasound and cyclic stress) helps to promote osteogenesis while reducing the inflammatory response. In addition, apart from 2D cell culture, more consideration should be given to the mechanical stimuli applied to 3D scaffolds and the effects of different force moduli while evaluating inflammatory responses. This will facilitate the application of physiotherapy in bone tissue engineering. Full article
(This article belongs to the Special Issue Advanced 3D Printing Biomaterials)
Show Figures

Figure 1

Back to TopTop