Special Issue "Pest Management in Sustainable Farming Systems"

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: closed (31 July 2019).

Special Issue Editor

Guest Editor
Dr. Finbarr Horgan Website E-Mail
EcoLaverna Integral Restoration Ecology, Bridestown, Kildinan, Co Cork, Ireland
Interests: ecological engineering; host plant resistance; one health; rice entomology; sustainable agriculture; virulence adaptation; wildlife conservation

Special Issue Information

Dear Colleagues,

Driven by the need to achieve global food security, and faced by growing concerns with resource depletion, researchers are challenged to design farming systems that achieve both economic and environmental sustainability. These systems must avoid pest damage while reducing the use of chemical pesticides. Authors are invited to submit research papers describing methods of pest control for clearly specified, sustainable farming systems. Papers may focus on any part of the knowledge-to-action pipeline. Research on management interventions that apply knowledge of the behaviours and/or ecology of harmful and beneficial insects are particularly welcome. Papers may also consider natural biocides approved or destined for organic agriculture, or innovations that clearly focus on reducing insecticide applications. Biological control agents can be regarded in a broad sense by including seed predators for weed control, or decomposers that reduce populations of nuisance flies. Papers should address aspects of sustainability by highlighting the comparative productivity and/or profitability advantages associated with their subject interventions.

Dr. Finbarr Horgan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biological control
  • decision support systems
  • ecological engineering
  • ecological intensification
  • integrated pest management
  • one health
  • organic agriculture
  • pheromones
  • silvopastoral systems

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Interactions between Fungal-Infected Helicoverpa armigera and the Predator Chrysoperla externa
Insects 2019, 10(10), 309; https://doi.org/10.3390/insects10100309 (registering DOI) - 20 Sep 2019
Abstract
The aim of the present study was to evaluate the interactions between Chrysoperla externa (Hagen, 1861) and the eggs and first-instar larvae of Helicoverpa armigera (Hübner 1805) infected by entomopathogenic fungi. The H. armigera eggs and larvae were treated with sterile distilled water [...] Read more.
The aim of the present study was to evaluate the interactions between Chrysoperla externa (Hagen, 1861) and the eggs and first-instar larvae of Helicoverpa armigera (Hübner 1805) infected by entomopathogenic fungi. The H. armigera eggs and larvae were treated with sterile distilled water + 0.01% Tween 80 (T1, control), Beauveria bassiana (Bals.) Vuill (T2), Metarhizium anisopliae (Metsch.) Sorok (T3), or Metarhizium rileyi (Farlow) Samson. (T4) at different concentrations (1 × 107, 1 × 108, and 1 × 109 con. mL−1). For each treatment, a single third-instar C. externa was offered prey (a combination of 80 eggs and 50 first-instar H. armigera larvae) at 0, 24, and 48 h after inoculation. Ten trials were completed for each treatment, and the entire experiment was repeated three times. Neither the concentrations of fungi nor the application method affected consumption by C. externa. Because all the predator larvae reached the pupal phase, with 100% viability in adults, these results suggest that entomopathogenic fungi and C. externa are compatible and that the simultaneous use of these biological control agents is possible for managing H. armigera. Full article
(This article belongs to the Special Issue Pest Management in Sustainable Farming Systems)
Show Figures

Graphical abstract

Open AccessFeature PaperArticle
Impact Assessment of Biological Control-Based Integrated Pest Management in Rice and Maize in the Greater Mekong Subregion
Insects 2019, 10(8), 226; https://doi.org/10.3390/insects10080226 - 30 Jul 2019
Abstract
The impact and sustainability of two interventions that have been formulated to introduce integrated pest management (IPM) into rice and maize crops in Southwestern China, Laos, and Myanmar between 2011 and 2016, and were assessed at the end of 2017. From 22 Trichogramma [...] Read more.
The impact and sustainability of two interventions that have been formulated to introduce integrated pest management (IPM) into rice and maize crops in Southwestern China, Laos, and Myanmar between 2011 and 2016, and were assessed at the end of 2017. From 22 Trichogramma rearing facilities established during the interventions, 11 were still producing substantial quantities of biocontrol agents 1.5 years after project support had ended, while seven had stopped operations completely, and four were doing stock rearing only. Through the implementation of biological control-based IPM, slightly higher yields were achieved in maize and rice (4–10%), when compared to control farmers, but the difference was not statistically significant. However, the use of pesticides nearly halved when farmers started using Trichogramma egg-cards as a biological control agent. Support from either public or private institutions was found to be important for ensuring the sustainability of Trichogramma rearing facilities. Many of the suggested IPM measures were not adopted by smallholder farmers, indicating that the positive impacts of the interventions mostly resulted from the application of Trichogramma biological control agents. The following assessment suggests that further promotion of IPM adoption among farmers is needed to upscale the already positive effects of interventions that facilitate reductions in synthetic pesticide use, and the effects on sustainable agricultural production of rice and maize in the target area more generally. Full article
(This article belongs to the Special Issue Pest Management in Sustainable Farming Systems)
Show Figures

Figure 1

Open AccessArticle
Carry-Over Niches for Lepidopteran Maize Stemborers and Associated Parasitoids during Non-Cropping Season
Insects 2019, 10(7), 191; https://doi.org/10.3390/insects10070191 - 28 Jun 2019
Abstract
Sources of infestation are the key elements to be considered in the development of habitat management techniques for the control of maize stemborers. Several wild plants, grasses mostly, have been identified that serve as hosts for stemborers and their parasitoids during the off-season [...] Read more.
Sources of infestation are the key elements to be considered in the development of habitat management techniques for the control of maize stemborers. Several wild plants, grasses mostly, have been identified that serve as hosts for stemborers and their parasitoids during the off-season when maize is not present in the field. However, their abundance is much lower in wild plants compared to cultivated fields. Thus, the role of wild plants as a reservoir for cereal stemborers and their parasitoids is still controversial, particularly in agro-ecosystems with reduced wild habitat. We studied the occurrence of different maize stemborers and associated parasitoids in maize stem residues and wild grasses during non-cropping seasons as potential carry-over populations to subsequent early season maize plants. Surveys were conducted in the central region of Kenya during long and short dry seasons in maize residues and wild grasses as well as during the two rainy seasons in maize plants at earlier and late whorl stages during the years of 2017 and 2018. Wild habitat had a higher species diversity than maize residues habitat, but maize residues had a higher abundance of maize stemborer species, such as Busseola fusca, Sesamia calamistis, and Chilo partellus, and of associated parasitoid species (i.e., Cotesia flavipes and Cotesia sesamiae) than wild plants. Our surveys, complemented by field parasitoid releases of C. flavipes and C. sesamiae, indicated that maize residues constitute a better refugia reservoir not only of the maize stemborers but also of C. flavipes and C. sesamiae during non-cropping seasons as compared to wild plants and, thus, might constitute in this region the main source of both stemborers and C. flavipes/C. sesamiae carry-over in maize plants during the subsequent cropping season. Thus, systematic destruction of maize residues would not help the biological control of lepidopteran stemborers. This is particularly true in areas with reduced wild habitat. Full article
(This article belongs to the Special Issue Pest Management in Sustainable Farming Systems)
Show Figures

Graphical abstract

Open AccessArticle
The ‘Botanical Triad’: The Presence of Insectary Plants Enhances Natural Enemy Abundance on Trap Crop Plants in an Organic Cabbage Agro-Ecosystem
Insects 2019, 10(6), 181; https://doi.org/10.3390/insects10060181 - 22 Jun 2019
Abstract
Habitat manipulation through the incorporation of non-crop plants such as trap crops (to lure pests away from the cash crop) and insectary plants (to provide resources for natural enemies) into agro-ecosystems is an ecological approach to pest management. In a field-scale study, we [...] Read more.
Habitat manipulation through the incorporation of non-crop plants such as trap crops (to lure pests away from the cash crop) and insectary plants (to provide resources for natural enemies) into agro-ecosystems is an ecological approach to pest management. In a field-scale study, we quantified the effects of integrating the use of trap crops with insectary plants as a novel method to control pest herbivores in an organic cabbage agro-ecosystem. We hypothesized that pests would be concentrated in the trap crop habitat and suppressed by insectary-subsidized natural enemies in situ. We documented arthropod abundance (both adults and immature stages) associated with (1) two insectary plant species (sweet alyssum, Lobularia maritima, and buckwheat, Fagopyrum esculentum) either alone or in combination; (2) a trap crop mixture of mighty mustard (Brassica juncea), red Russian kale (Brassica oleracea var. acephala), and glossy collards (Brassica oleracea var. italica), and (3) cabbage cash crop (Brassica oleracea var. capitata). Trap crops were more attractive to pests than the cash crop. On a per-plant basis, densities of the herbivores Evergestis rimosalis, Trichoplusia ni, and Plutella xylostella were 154, 37, and 161× greater on the kale trap crop than on the cabbage cash crop, and 54, 18, and 89× greater on the collards trap crop than on the cash crop. Insectary plants contributed to the consumption of pests that aggregated on the trap crop. Parasitism of E. rimosalis by the braconid wasp Cotesia orobenae was significantly increased, and the abundance of eggs and larvae of the predatory coccinellid beetle Coleomegilla maculata was greater on the trap crop in the presence of insectary plants compared to trap crops that lacked insectary plants. The ‘Botanical Triad’ of cash crop, trap crop, and insectary plants represents a new type of agro-ecosystem manipulation that integrates ecosystem service providers (e.g., predators and parasitoids) within the cropping system. Full article
(This article belongs to the Special Issue Pest Management in Sustainable Farming Systems)
Show Figures

Graphical abstract

Back to TopTop