ijms-logo

Journal Browser

Journal Browser

Molecular Breeding and Genetic Regulation of Crops, 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 1164

Special Issue Editor


E-Mail Website
Guest Editor
Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy
Interests: plant–pathogen interaction; plant response to environmental stresses; GWAS; linkage mapping; plant genomics; plant transcriptomics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Molecular breeding and the genetic regulation of crops are pivotal in modern agriculture, offering innovative solutions to enhancing crop productivity, nutritional quality, and resilience. Molecular breeding can be used to harness biotechnology and genomics to expedite the development of improved crop varieties through the identification of specific genetic markers associated with desirable traits. Marker-assisted selection and genome-editing techniques enable precision breeding, reducing the time and resources required in comparison to traditional methods. Genetic regulation, on the other hand, can be used to explore the intricate mechanisms controlling gene expression in response to environmental and developmental cues. Understanding epigenetic modifications further increases our ability to fine-tune crops for specific needs. The synergy between molecular breeding and genetic regulation provides a powerful approach to addressing food security challenges through creating crop varieties adapted to a changing climate.

This Special Issue will cover molecular breeding and genetic regulation research, with the aim of presenting the significance of these fields in shaping the future of sustainable and resilient agriculture.

Dr. Chiara Biselli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular breeding
  • genetic regulation
  • genomics
  • genome-editing techniques
  • epigenetic modifications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 7089 KiB  
Article
Ac/Ds-like Transposon Elements Inserted in ZmABCG2a Cause Male Sterility in Maize
by Le Wang, Saeed Arshad, Taotao Li, Mengli Wei, Hong Ren, Wei Wang, Haiyan Jia, Zhengqiang Ma and Yuanxin Yan
Int. J. Mol. Sci. 2025, 26(2), 701; https://doi.org/10.3390/ijms26020701 - 15 Jan 2025
Viewed by 856
Abstract
Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we [...] Read more.
Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we reported a male sterility gene ms*-N125, cloned from a newly found MS mutant ms*-N125. This mutant has an underdeveloped tassel that showed impaired glumes and shriveled anthers without pollen grains. The MS locus of ms*-N125 was mapped precisely to a 112-kb-interval on the chromosome 5. This interval contains only three candidate genes, Zm958, Zm959, and Zm960. Sequencing results showed that only candidate Zm960 harbored a 548-bp transposable element (TE) in its 9th exon, and the two other candidate genes were found to have no genetic variations between the mutant and wild type (WT). Thus, Zm960 is the only candidate gene for male sterility of the mutant ms*-N125. In addition, we screened another recessive MS mutant, ms*-P884, which exhibited similar male sterility phenotypes to ms*-N125. Sequencing Zm960 in ms*-P884 showed a 600-bp TE located in its 2nd exon. Zm960 encodes an ATP-binding cassette in the G subfamily of ABC (ABCG) transporters, ZmABCG2a, with both mutants which harbored an Ac/Ds-like transposon in each. To verify the function of ZmABCG2a for male sterility further, we found an ethyl methanesulfonate (EMS) mutant, zmabcg2a*, which displayed male sterility and tassel phenotypes highly similar to ms*-N125 and ms*-P884, confirming that ZmABCG2a must be the gene for male sterility in maize. In addition, the results of lipid metabolome analysis of ms*-N125 young tassels showed that the total lipid content of the mutant was significantly lower than that of the WT, with 15 subclasses of lipids, including PE (phosphatidylethanolamine), PC (phosphatidylcholine), DG (digalactosyldiacylglycerols), and MGDG (monogalactosyldiacylglycerol) which were significantly down-regulated in the ms*-N125 mutant versus its wild type. In summary, we identified alternate mutations of the ZmABCG2a gene, which may be a potential germplasm for hybrid seed production in maize. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetic Regulation of Crops, 2nd Edition)
Show Figures

Figure 1

Back to TopTop