ijms-logo

Journal Browser

Journal Browser

Light in Fungi: Photoreception, Metabolism Regulation and Current Biotechnological Applications

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: closed (30 March 2025) | Viewed by 2189

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
Interests: laccase; wood degradation; microbiology; genomics; phylogenetics; fungal enzymes; light; enzymes in biotechnology; bioremediation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Sunlight is a very important environmental signal for every living organism, and it can be considered crucial for effective competition and survival in nature. In fungi, which are able to detect light stimuli via various protein receptors, light controls several processes, e.g., metabolic processes, developmental decisions, physiological adaptations, morphogenesis, the circadian clock and cellular stress response. Therefore, the reaction of fungi to a light signal is multidirectional and varies across fungal species. In recent years, it has been repeatedly proven that in response to light, fungi can change their global gene expression profile and, consequently, influence metabolism and numerous signal transduction pathways. Changes in response to light have been observed in the metabolism of many important metabolites and macromolecules. The research conducted so far in the field of fungal photobiology focuses on the physiological importance of light for fungi, as well as on the regulation of metabolism and enzyme activity by light and the possibility of using this property to improve biotechnological processes.

The proposed Special Issue will cover all aspects of the influence of light on fungi, with importance in the fields of biochemistry, genetics and biotechnology, and will highlight possible areas for development. At the same time, research or review papers contributing significantly to a better understanding of fungal photobiology and light-based regulation of metabolism, especially using “-omics” techniques and molecular methods, are highly welcome.

We look forward to receiving your contributions to give greater value to the present project.

Dr. Anna Pawlik
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photoreceptor
  • opsin
  • white collar
  • phytochrome
  • cryptochrome
  • fungal photobiology
  • light regulation
  • metabolism
  • biotechnological processes
  • light signalling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2159 KiB  
Article
Modulation of Abortiporus biennis Response to Oxidative Stress by Light as a New Eco-Friendly Approach with a Biotechnological Perspective
by Anna Pawlik, Adrianna Rudawska, Anita Swatek, Grzegorz Janusz, Magdalena Frąc, Marcin Grąz, Przemysław Matuła and Magdalena Jaszek
Int. J. Mol. Sci. 2025, 26(12), 5482; https://doi.org/10.3390/ijms26125482 - 7 Jun 2025
Viewed by 369
Abstract
To comprehensively explore the impact of oxidative stress, induced by menadione and light at various wavelengths, on the metabolism and selected biochemical markers of the white rot fungus Abortiporus biennis, a phenotypic approach based on FF Panels and biochemical analysis was applied. [...] Read more.
To comprehensively explore the impact of oxidative stress, induced by menadione and light at various wavelengths, on the metabolism and selected biochemical markers of the white rot fungus Abortiporus biennis, a phenotypic approach based on FF Panels and biochemical analysis was applied. It was possible to determine the metabolic profile of this basidiomycete, which varied greatly during fungal growth. A noticeable effect of green and red light and menadione on the overall metabolic activity and the theoretical metabolic efficiency was observed. The fungus exhibited preferences for the utilisation of polymers. The analysis of biochemical parameters revealed the highest levels of the superoxide anion radical in cultures grown in darkness and red light. The concentration of phenolic compounds in the presence of menadione slightly increased, reaching its highest level on day 10 after stress stimulation. The most substantial antioxidative effect was observed on the fifth day in cultures incubated in green light. The addition of menadione significantly stimulated laccase activity but had a negative effect on superoxide dismutase and catalase activities. In general, higher enzymatic activities were observed in white light conditions; additionally, in the case of dismutase activity, higher activities were determined in the blue and dark light variants. The findings presented in this study indicate that the biochemical changes are a resultant phenomenon of the action of the two stressors, and the response of this fungus to light- and menadione-induced oxidative stress is complex and multidirectional. These data may provide a basis for efficient and simple improvements of the industrial and medicinal potential of A. biennis. Full article
Show Figures

Graphical abstract

20 pages, 5061 KiB  
Article
Expanded Gene Regulatory Network Reveals Potential Light-Responsive Transcription Factors and Target Genes in Cordyceps militaris
by Paradee Buradam, Roypim Thananusak, Mattheos Koffas, Pramote Chumnanpuen and Wanwipa Vongsangnak
Int. J. Mol. Sci. 2024, 25(19), 10516; https://doi.org/10.3390/ijms251910516 - 29 Sep 2024
Viewed by 1387
Abstract
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and [...] Read more.
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and light-signaling pathways. However, the mechanisms of gene regulation in response to light exposure in C. militaris remain largely unexplored. This study aimed to identify light-responsive genes and potential transcription factors (TFs) in C. militaris through an integrative transcriptome analysis. To achieve this, we reconstructed an expanded gene regulatory network (eGRN) comprising 507 TFs and 8662 regulated genes using both interolog-based and homolog-based methods to build the protein–protein interaction network. Aspergillus nidulans and Neurospora crassa were chosen as templates due to their relevance as fungal models and the extensive study of their light-responsive mechanisms. By utilizing the eGRN as a framework for comparing transcriptomic responses between light-exposure and dark conditions, we identified five key TFs—homeobox TF (CCM_07504), FlbC (CCM_04849), FlbB (CCM_01128), C6 zinc finger TF (CCM_05172), and mcrA (CCM_06477)—along with ten regulated genes within the light-responsive subnetwork. These TFs and regulated genes are likely crucial for the growth, development, and secondary metabolite production in C. militaris. Moreover, molecular docking analysis revealed that two novel TFs, CCM_05727 and CCM_06992, exhibit strong binding affinities and favorable docking scores with the primary light-responsive protein CmWC-1, suggesting their potential roles in light signaling pathways. This information provides an important functional interactive network for future studies on global transcriptional regulation in C. militaris and related fungi. Full article
Show Figures

Figure 1

Back to TopTop