ijms-logo

Journal Browser

Journal Browser

Recent Advances in Nanoparticles in Molecular Biology: Second Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1045

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
Interests: metal nanoparticles; metal-oxide-based nanoparticles; antimicrobial activity; nanobiomedicine; wound dressings; immunotherapy; regenerative medicine; biosensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanoparticles are small particles that range between 1 and 100 nanometers in size. Given their nanoscale, they have unique material properties, and fabricated nanoparticles are used in a variety of applications, including medicine and pharmaceuticals, catalysis, and foods.

Biomolecules can also be engineered to have unique compositions and functions, such as proteins, nucleic acids, and polysaccharides. They can be collocated with various types of nanoparticles (e.g., metals and metal oxides) to utilize the inherent characteristics of the biomolecules to complement the unique properties of the nanoparticles, resulting in novel biomolecule–nanoparticle hybrids.

This Special Issue, “Recent Advances in Nanoparticles in Molecular Biology: Second Edition”, of the International Journal of Molecular Sciences will focus on the synthesis, characterization, and functionalization of nanoparticles in molecular biology. Topics may include, but are not limited to:

  • The synthesis and functionalization of novel biomolecule–nanoparticle hybrids;
  • The application of nanoparticles in cancer treatment;
  • The preparation of nanomedicines utilizing nanoparticles and their pharmacokinetics;
  • The mechanistic study of nanoparticle–cell interactions;
  • The cytotoxic potential of nanoparticles.

Original research papers and reviews on the application of nanoparticles in molecular biology are welcome.

Dr. Maciej Monedeiro-Milanowski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • nanomedicine
  • biomolecules
  • nanoparticle–cell interactions
  • organic–inorganic hybrid
  • cytotoxic potential

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6453 KiB  
Article
Human Embryonic Kidney HEK293 Cells as a Model to Study SMVT-Independent Transport of Biotin and Biotin-Furnished Nanoparticles in Targeted Therapy
by Magdalena Twardowska, Andrzej Łyskowski, Maria Misiorek, Żaneta Szymaszek, Stanisław Wołowiec, Magdalena Dąbrowska and Łukasz Uram
Int. J. Mol. Sci. 2025, 26(4), 1594; https://doi.org/10.3390/ijms26041594 - 13 Feb 2025
Viewed by 735
Abstract
The aim of this study was to investigate the usefulness of human embryonic kidney HEK293 cells as a model of normal cells in biotin-mediated therapy. The expression and role of sodium multivitamin transporter (SMVT) in the uptake and accumulation of free biotin, as [...] Read more.
The aim of this study was to investigate the usefulness of human embryonic kidney HEK293 cells as a model of normal cells in biotin-mediated therapy. The expression and role of sodium multivitamin transporter (SMVT) in the uptake and accumulation of free biotin, as well as cationic and neutral biotinylated PAMAM dendrimers of the fourth generation synthesized in our laboratory, were assessed in HEK293 cells in comparison to other immortalized (HaCaT) and cancer cells (HepG2, U-118 MG). The obtained data showed that a higher level of SMVT in HEK293 cells was not associated with a stronger uptake of biotin and biotinylated PAMAM dendrimers. Biotinylation increased the selective uptake of neutral dendrimers in an inversely proportional manner to the concentration used; however, the accumulation in HEK293 cells was lower than that in cells of other cell lines. The time-dependent biotin and biotinylated dendrimers uptake profiles differed significantly. Therefore, it should be assumed that the efficiency of biotinylated nanoparticles’ uptake depends on multiple cellular transport mechanisms. Toxicity tests showed significantly higher sensitivity to PAMAM conjugates for HEK293 cells than for HepG2 and HaCaT cells. Molecular modeling studies and the profile of biotin uptake suggest that not only SMVT but also monocarboxylate transporter 1 (MCT-1) may play an important role in the selective transport of biotin and biotinylated nanoparticles into cells. Due to the complexity of the problem, further studies are necessary. In summary, HEK293 cells can be considered a valuable model of normal cells in the study of biotin- targeted therapy using nanoparticles based on PAMAM dendrimers. Full article
(This article belongs to the Special Issue Recent Advances in Nanoparticles in Molecular Biology: Second Edition)
Show Figures

Figure 1

Back to TopTop