ijms-logo

Journal Browser

Journal Browser

Plant Breeding Strategies: Employment of Plant Adaptation Mechanisms to Biotic and Abiotic Stresses

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 June 2026 | Viewed by 1200

Special Issue Editor


E-Mail Website
Guest Editor
Department of Orchard Plant Genetics and Biotechnology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas District, LT-54333 Babtai, Lithuania
Interests: orchard plant genetics; plant metabolomics; gene expression study; orchard plant breeding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recently, various requirements for novel plant breeding methods have emerged. Plant response-based strategies for cultural plant breeding involve the use of genetic resources based on their responses to various environmental and biotic factors at the molecular level. This approach aims to enhance crop yield, resilience, and sustainability by leveraging plants’ natural adaptive mechanisms for stress tolerance and yield performance. The purpose of this Special Issue is to deepen our knowledge and collate manuscripts focused on key strategies in the phenotypic and genotypic breeding of cultural plants and establish a correlation on a molecular level. Marker-assisted selection (MAS), transcriptome or proteome analysis, transgenic approaches, and plant microbiome are possible tools used to create resilient agricultural systems capable of sustaining productivity and adapting to changing environmental conditions. To ensure the diversity of approaches and viewpoints of the authors, we aim to collate different types of articles, such as original articles, systematic reviews, and communications.

This Special Issue is supervised by Dr. Vidmantas Bendokas and assisted by our Topical Advisory Panel Member Dr. Ingrida Mažeikienė, ingrida.mazeikiene@lammc.lt (Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Lithuania).

Dr. Vidmantas Bendokas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marker-assisted selection
  • molecular breeding
  • whole-transcriptome analysis
  • RNA sequencing
  • DNA sequencing
  • plant stress response

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 3202 KB  
Article
DArTseq-Based, High-Throughput Identification of Novel Molecular Markers for the Detection of Fusarium Resistance in Maize
by Maciej Lenort, Agnieszka Tomkowiak, Aleksandra Sobiech, Jan Bocianowski, Karolina Jarzyniak, Przemysław Olejnik, Tomasz Jamruszka and Przemysław Gawrysiak
Int. J. Mol. Sci. 2025, 26(21), 10534; https://doi.org/10.3390/ijms262110534 - 29 Oct 2025
Viewed by 459
Abstract
Modern maize breeding worldwide relies on a broad range of molecular genetics research techniques. These technologies allow us to identify genomic regions associated with various phenotypic traits, including resistance to fungi of the genus Fusarium. Therefore, the aim of this publication was [...] Read more.
Modern maize breeding worldwide relies on a broad range of molecular genetics research techniques. These technologies allow us to identify genomic regions associated with various phenotypic traits, including resistance to fungi of the genus Fusarium. Therefore, the aim of this publication was to identify new molecular markers linked to candidate genes that confer maize resistance to Fusarium fungi, using next-generation sequencing, association mapping, and physical mapping. In the study, a total of 5714 significant molecular markers related to maize plant resistance to Fusarium fungi were identified. Of these, 10 markers were selected that were significantly associated (with the highest LOD values) with the disease. These markers were identified on chromosomes 5, 6, 7, 8, and 9. The authors were particularly interested in two markers: SNP 4583014 and SilicoDArT 4579116. The SNP marker is located on chromosome 5, in exon 8 of the gene encoding alpha-mannosidase I MNS5. The SilicoDArT marker is located 240 bp from the gene for peroxisomal carrier protein on chromosome 8. Our own research and the presented literature review indicate that both these genes may be involved in biochemical reactions triggered by the stress caused by plant infection with Fusarium fungal spores. Molecular analyses indicated their role in resistance processes, as resistant varieties responded with an increase in the expression level of these genes at various time points after plant inoculation with Fusarium fungal spores. In the negative control, which was susceptible to Fusarium, no significant fluctuations in the expression levels of either gene were observed. Analyses concerning the identification of Fusarium fungi showed that the most abundant fungi on the infected maize kernels were Fusarium poae and Fusarium culmorum. Individual samples were very sparsely colonized by Fusarium or not at all. By using various molecular technologies, we identified genomic regions associated with maize resistance to Fusarium fungi, which is of fundamental importance for understanding these regions and potentially manipulating them. Full article
Show Figures

Figure 1

15 pages, 2665 KB  
Article
Gene Expression Profiling of Transcription Factors and Acclimation-Related Genes in Ribes spp.
by Ana Dovilė Zubauskienė, Edvinas Misiukevičius, Vidmantas Bendokas, Emmanuel Gabriel Njoku and Ingrida Mažeikienė
Int. J. Mol. Sci. 2025, 26(21), 10367; https://doi.org/10.3390/ijms262110367 - 24 Oct 2025
Cited by 1 | Viewed by 482
Abstract
The ability of Ribes species to survive the fluctuating winter and early spring conditions, relies on the regulation of transcription factors (TFs) and other key genes involved in the abiotic stress response. In this study, we developed specific primers for 33 stress-responsive genes, [...] Read more.
The ability of Ribes species to survive the fluctuating winter and early spring conditions, relies on the regulation of transcription factors (TFs) and other key genes involved in the abiotic stress response. In this study, we developed specific primers for 33 stress-responsive genes, which may facilitate future functional studies in Ribes and other less-characterized lineages within the Saxifragales order. These genes were selected based on a comparative transcriptomic analysis of R. nigrum cv. Aldoniai and are known to function in cold acclimation and stress signaling pathways. We analyzed expression profiles of these 33 genes in R. aureum, R. hudsonianum, and R. nigrum microshoot cultures exposed to controlled cold stress, deacclimation and reacclimation treatments. Our results revealed species-specific genetic responses across acclimation cycles of varying durations (24–96 h). Cold stress induces molecular changes in three Ribes spp.; however, deacclimation triggered by transient warming significantly reduced freezing tolerance in R. nigrum, had a moderate effect on R. hudsonianum, and minor impact on R. aureum. Gene expression profiling revealed distinct, species-specific regulatory patterns among species during different stress cycles, highlighting conserved and specific genes in acclimation mechanisms within the Ribes spp. These findings contribute to a deeper understanding of transcriptional regulation under acclimation cycles in currants and provide molecular tools that may support breeding strategies aimed at enhancing cold tolerance in Ribes crops amid increasing climate variability. Full article
Show Figures

Figure 1

Back to TopTop