ijms-logo

Journal Browser

Journal Browser

Molecular Insights into Protein Structure and Folding

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biophysics".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 1477

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo 164-8530, Japan
Interests: NMR protein folding; apomyoglobin

Special Issue Information

Dear Colleagues,

Protein folding is a crucial aspect of protein function and the protein structure. If the stabilized folding intermediate exists during the folding pathway, the characterization of the intermediate is also essential for estimating the function. This Special Issue welcomes the submission of articles offering an experimental methodology and predictions based on this sequence for the structural analysis of the large protein molecule at the intermediate between unfolded and folded states, kinetics and equilibrium. In order to analyze the folding state, dynamic studies on protein flexibility will be included. In addition, the intrinsically disordered protein will be analyzed in its native state in order to determine the residual structure.

Prof. Dr. Chiaki Nishimura
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • protein folding
  • protein function
  • protein structure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5448 KiB  
Article
Biophysical Analysis of Vip3Aa Toxin Mutants Before and After Activation
by Pongsatorn Khunrach, Wahyu Surya, Boonhiang Promdonkoy, Jaume Torres and Panadda Boonserm
Int. J. Mol. Sci. 2024, 25(22), 11970; https://doi.org/10.3390/ijms252211970 - 7 Nov 2024
Viewed by 1104
Abstract
Cry toxins from Bacillus thuringiensis are effective biopesticides that kill lepidopteran pests, replacing chemical pesticides that indiscriminately attack both target and non-target organisms. However, resistance in susceptible pests is an emerging problem. B. thuringiensis also produces vegetative insecticidal protein (Vip3A), which can kill [...] Read more.
Cry toxins from Bacillus thuringiensis are effective biopesticides that kill lepidopteran pests, replacing chemical pesticides that indiscriminately attack both target and non-target organisms. However, resistance in susceptible pests is an emerging problem. B. thuringiensis also produces vegetative insecticidal protein (Vip3A), which can kill insect targets in the same group as Cry toxins but using different host receptors, making the combined application of Cry and Vip3A an exciting possibility. Vip3A toxicity requires the formation of a homotetramer. Hence, screening of Vip3A mutants for increased stability requires orthogonal biophysical assays that can test both tetrameric integrity and monomeric robustness. For this purpose, we have used herein for the first time a combination of analytical ultracentrifugation (AUC), mass photometry (MP), differential static light scattering (DSLS) and differential scanning fluorimetry (DSF) to test five mutants at domains I and II. Although all mutants appeared more stable than the wild type (WT) in DSLS, mutants that showed more dissociation into dimers in MP and AUC experiments also showed earlier thermal unfolding by DSF at domains IV–V. All of the mutants were less toxic than the WT, but toxicity was highest for domain II mutations N242C and F229Y. Activation of the protoxin was complete and resulted in a form with a lower sedimentation coefficient. Future high-resolution structural data may lead to a deeper understanding of the increased stability that will help with rational design while retaining native toxicity. Full article
(This article belongs to the Special Issue Molecular Insights into Protein Structure and Folding)
Show Figures

Figure 1

Back to TopTop