Integrating Geophysical and Geomorphological Methods in (Geo)-Archaeological Research

A special issue of Geosciences (ISSN 2076-3263).

Deadline for manuscript submissions: closed (15 May 2022) | Viewed by 13344

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Interests: archaeological prospection; near surface geophysics; data processing

E-Mail Website
Co-Guest Editor
Institute of Geography, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
Interests: geomorphology; Quaternary science; geoarchaeology; palaeo-) pedology; near surface exploration

Special Issue Information

Dear Colleagues,

In recent times, research studies combining archaeological, geophysical, and geomorphological–sedimentological methods gain more and more importance. The strength of such studies is the combination of methods and joint interpretation to decipher human behavioral and cultural evolution on different spatial and temporal scales, and the integration of the four-dimensional development of the land surface representing the living space of humans. Thus, the investigated human habitat or living space may also include areas which are now submerged due to sea level rise or tectonic subsidence. In this context, in addition to fundamental research, saving cultural heritage under global change should be an additional major target of current and future research, where a combination of available archaeological, geophysical, and geomorphological methods yield great potential.   

This Special Issue welcomes contributions showing the benefit of well-established approaches as well as innovative applications of geophysical and/or geoarchaeological methods to provide new insights into near-surface stratigraphical exploration, past human behavioral and cultural evolution, and landscape development from prehistoric to modern times.

Dr. Tina Wunderlich
Guest Editors

Dr. Peter Fischer
Co-Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • geophysics
  • geoarchaeology
  • archaeology
  • geomorphology
  • joint interpretation
  • prehistory to modern times

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

28 pages, 3178 KiB  
Article
Latest Pleistocene and Holocene Floodplain Evolution in Central Europe—Insights from the Upper Unstrut Catchment (NW-Thuringia/Germany)
by André Kirchner, Jasmin Karaschewski, Philipp Schulte, Tina Wunderlich and Tobias Lauer
Geosciences 2022, 12(8), 310; https://doi.org/10.3390/geosciences12080310 - 19 Aug 2022
Cited by 2 | Viewed by 1713
Abstract
The upper Unstrut River is located in Germany at the modern Central European climate boundary of Cfb and Dfb climate. The river drains a loess landscape, which has experienced important environmental changes throughout the last 12,000 years. To evaluate the impacts of these [...] Read more.
The upper Unstrut River is located in Germany at the modern Central European climate boundary of Cfb and Dfb climate. The river drains a loess landscape, which has experienced important environmental changes throughout the last 12,000 years. To evaluate the impacts of these changes on floodplain evolution, a multi-proxy research program, consisting of 2D electrical resistivity tomography profiling (ERT), vibracoring, and sedimentological investigations, 14C and OSL dating were applied. From base to top the investigations the following fluvial deposits were revealed: (1) gravels embedded in a fine-grained sediment matrix (interpreted as fluvial bedload deposits); (2) silty sediment with pedogenic features (interpreted as overbank floodplain deposits); (3) peat and tufa deposits (interpreted as wetland deposits) intercalated by pedogenetically influenced silty sediments (interpreted as overbank deposits); (4) humic silty sediment with some pedogenic features (interpreted as overbank floodplain deposits); and (5) silty sediments (interpreted as overbank deposits). Radiocarbon and luminescence dates yielded the following periods for sediment formation: (1) Younger Dryas to Preboreal period (around 11.6 cal ka BP); (2) Preboreal to early Atlantic period (approx. 11.6 to 7.0 cal ka BP); (3) early Atlantic to late Subboreal period (approx. 7.3 to 3.4 cal ka BP); (4) late Subboreal to early Subatlantic period (2.9 to 2.3 cal ka BP); and (5) late Subatlantic period (approx. 1.0 to 0.6 cal ka BP). The results suggest that floodplain development during the latest Pleistocene and early Holocene (approx. 11.6 to 7.0 cal ka BP) was considerably controlled by climatic conditions and short-term climate variabilities, which caused gravel deposition and overbank sedimentation. Afterwards floodplain conditions varied between rather stable (peat and tufa development, initial soil formation) and active periods (deposition of overbank fines). In this context, active periods with increased sediment input prevailed from approx. 5.1 to 3.4 cal ka BP, 2.9 to 2.3 cal ka, and 1.0 to 0.6 cal ka BP, temporally corresponding well with increased land-use phases of the past. In conclusion this study demonstrates that the investigated Unstrut catchment has reacted very sensitively to natural and human-induced changes during the latest Pleistocene and Holocene. Consequently, this high vulnerability to external changes should be considered in future river predictions or river management. Full article
Show Figures

Figure 1

18 pages, 28688 KiB  
Article
Multi-Methodological Investigation of the Biersdorf Hillslope Debris Flow (Rheinland-Pfalz, Germany) Associated to the Torrential Rainfall Event of 14 July 2021
by Teemu Hagge-Kubat, Peter Fischer, Philip Süßer, Philipp Rotter, Ansgar Wehinger, Andreas Vött and Frieder Enzmann
Geosciences 2022, 12(6), 245; https://doi.org/10.3390/geosciences12060245 - 14 Jun 2022
Cited by 6 | Viewed by 2241
Abstract
The investigation of mass movements is of major interest in mountain regions as these events represent a significant hazard for people and cause severe damage to crucial infrastructure. The torrential rainfall event that mainly occurred on the 14 July 2021 in western Central [...] Read more.
The investigation of mass movements is of major interest in mountain regions as these events represent a significant hazard for people and cause severe damage to crucial infrastructure. The torrential rainfall event that mainly occurred on the 14 July 2021 in western Central Europe not only led to severe flooding catastrophes (e.g., Meuse, Ahr and Erft rivers) but also triggered hundreds of mass movements in the low mountain range. Here, we investigate a hillslope debris flow that occurred in Biersdorf in the Eifel area (Rhenish Massif, Rheinland-Pfalz) using a comprehensive geomorphological–geophysical approach in order to better understand the triggering mechanisms and process dynamics. We combined field studies by means of Electrical Resistivity Tomography (ERT), Direct Push Hydraulic Profiling (HPT) and sediment coring with UAV-generated photogrammetry, as well as debris flow runout modelling. Our results show that for the Biersdorf hillslope debris flow, the geomorphological and geotectonic position played a crucial role. The hillslope debris flow was triggered at a normal fault separating well-draining limestones of the Lower Muschelkalk, from dense weathered clay and sandstones of the Upper Buntsandstein. The combination of a large surface runoff and strong interflow at the sliding surface caused a transformation from an initial translational slide into the high-energy and widespread hillslope debris flow. We further created and validated a stand-alone model of the debris flow on a local scale achieving promising results. The model yields a 97% match to the observed runout area as well as to deposition spreads and heights. Thus, our study provides a pathway for analyzing hillslope debris flows triggered by torrential rainfall events in low mountain ranges. General knowledge on hillslope debris flows, risk assessment and hazard prevention were improved, and results can be transferred to other regions to improve risk assessment and hazard prevention. Full article
Show Figures

Figure 1

28 pages, 12085 KiB  
Article
Reconstructing the Fluvial History of the Lilas River (Euboea Island, Central West Aegean Sea) from the Mycenaean Times to the Ottoman Period
by Matthieu Ghilardi, Tim Kinnaird, Katerina Kouli, Andrew Bicket, Yannick Crest, François Demory, Doriane Delanghe, Sylvian Fachard and David Sanderson
Geosciences 2022, 12(5), 204; https://doi.org/10.3390/geosciences12050204 - 11 May 2022
Viewed by 2991
Abstract
This paper aims to reconstruct the alluvial activity for the Lilas river, the second-largest catchment of Euboea Island (Central Western Aegean Sea), for approximately the last three and a half millennia. The middle reaches (Gides basin) exhibit several historical alluvial terraces that were [...] Read more.
This paper aims to reconstruct the alluvial activity for the Lilas river, the second-largest catchment of Euboea Island (Central Western Aegean Sea), for approximately the last three and a half millennia. The middle reaches (Gides basin) exhibit several historical alluvial terraces that were first recognised in the 1980s but have remained poorly studied, resulting in uncertain chronological control of palaeofluvial activity. In order to reconstruct the past fluvial dynamics of the Lilas river, a ca. 2.5 m thick stratigraphic profile has been investigated for granulometry and magnetic parameters. Absolute dating of the sediments was possible by applying Optically Stimulated Luminescence (OSL). The results reveal: (i) two coarse-grained aggradational episodes dated from the Mycenaean/Early Iron Age and the Roman periods, respectively, (ii) a phase of rapid fine-grained vertical accretion corresponding to the Late Byzantine to early Venetian periods, (iii) potential evidence for final alluvial deposition from the Little Ice Age/Ottoman period, and (iv) two major incision episodes inferred from Ancient Greek times and most of the Byzantine period. Based on the published core material, the paper also evaluates the direct impacts of the Late Holocene alluviation recorded mid-stream on the fluvial system situated downstream in the deltaic area. Sediment sourcing is attempted based on the magnetic properties of the catchment lithology and of alluvium collected upstream along the main stream bed. Finally, the present paper discusses the possible links between Late Holocene hydroclimatic oscillations and the aggradational/incision phases revealed in the Gides basin. Correlations are attempted with regional palaeoclimate records obtained for the Aegean. In addition to climatic variability, anthropogenic factors are considered: specific land use for agricultural purposes, in particular during the Mycenaean period, the Roman and the Late Byzantine/Early Venetian periods, might have enhanced sediment deposition. Archaeological information and pollen records were also evaluated to reconstruct regional land-use patterns and possible impacts on soil accumulation over the last 3.5 millennia. Full article
Show Figures

Figure 1

19 pages, 4163 KiB  
Article
The Sacred Waterscape of the Temple of Bastet at Ancient Bubastis, Nile Delta (Egypt)
by Julia Meister, Philipp Garbe, Julian Trappe, Tobias Ullmann, Ashraf Es-Senussi, Roland Baumhauer, Eva Lange-Athinodorou and Amr Abd El-Raouf
Geosciences 2021, 11(9), 385; https://doi.org/10.3390/geosciences11090385 - 10 Sep 2021
Cited by 6 | Viewed by 3279
Abstract
Sacred water canals or lakes, which provided water for all kinds of purification rites and other activities, were very specific and important features of temples in ancient Egypt. In addition to the longer-known textual record, preliminary geoarchaeological surveys have recently provided evidence of [...] Read more.
Sacred water canals or lakes, which provided water for all kinds of purification rites and other activities, were very specific and important features of temples in ancient Egypt. In addition to the longer-known textual record, preliminary geoarchaeological surveys have recently provided evidence of a sacred canal at the Temple of Bastet at Bubastis. In order to further explore the location, shape, and course of this canal and to find evidence of the existence of a second waterway, also described by Herodotus, 34 drillings and five 2D geoelectrical measurements were carried out in 2019 and 2020 near the temple. The drillings and 2D ERT surveying revealed loamy to clayey deposits with a thickness of up to five meters, most likely deposited in a very low energy fluvial system (i.e., a canal), allowing the reconstruction of two separate sacred canals both north and south of the Temple of Bastet. In addition to the course of the canals, the width of about 30 m fits Herodotus’ description of the sacred waterways. The presence of numerous artefacts proved the anthropogenic use of the ancient canals, which were presumably connected to the Nile via a tributary or canal located west or northwest of Bubastis. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 13277 KiB  
Review
Combined Zonation of the African-Levantine-Caucasian Areal of Ancient Hominin: Review and Integrated Analysis of Paleogeographical, Stratigraphic and Geophysical-Geodynamical Data
by Lev V. Eppelbaum and Youri I. Katz
Geosciences 2022, 12(1), 21; https://doi.org/10.3390/geosciences12010021 - 5 Jan 2022
Cited by 3 | Viewed by 2189
Abstract
The origin of the man on Earth is directly associated with the determination of directions of the flow distribution of the ancient man dispersal to adjacent territories. In such studies, mainly landscape and climatological changes are traditionally considered. We suggest that along with [...] Read more.
The origin of the man on Earth is directly associated with the determination of directions of the flow distribution of the ancient man dispersal to adjacent territories. In such studies, mainly landscape and climatological changes are traditionally considered. We suggest that along with the above factors, regional tectonic-geodynamic factors played a dominant role in the character of dispersal. The considered African-Levantine-Caucasian region is one of the most geologically complex regions of the world, where collisional and spreading processes of geodynamics converge. For the first time, we determined an essential influence of the Akchagylian hydrospheric maximum (about 200 m above the mean sea level) limiting the early dispersal of hominins from Africa to Eurasia. We propose that the Levantine Corridor emerged after the end of the Akchagylian transgression and landscape forming in the Eastern Mediterranean. This corridor location was formed by the movements between the Dead Sea Transform and the boundary of the carbonate platform of the Mesozoic Terrane Belt. Further landscape evolution was largely determined by the geodynamic behavior of the deep mantle rotating structure occurring below the central part of the region under study. All the mentioned events around and in the Levantine Corridor have been studied in detail on the basis of the combined geodynamic, paleogeographic, and paleomagnetic analyses performed in northern Israel (Carmel Uplift and Galilee Plateau). Careful studies of the Evron Quarry geological section indicate that it is unique for the dating of marine and continental archaeological sequences and sheds light on the early dispersal of hominins along the Levantine Corridor. Full article
Show Figures

Figure 1

Back to TopTop