Multi-Methodological Investigation of the Biersdorf Hillslope Debris Flow (Rheinland-Pfalz, Germany) Associated to the Torrential Rainfall Event of 14 July 2021
Abstract
:1. Introduction
2. Regional Setting
2.1. Geological Situation
2.2. Weather Situation during 14 July 2021
3. Methods
3.1. UAV Photogrammetry
3.2. Electrical Resitivity Tomography (ERT)
3.3. Direct Push Hydraulic Profiling Tool (DP HPT)
3.4. Sediment Coring
3.5. Surface Runoff Simulation
3.6. Debris Flow Runout Simulation
4. Results
4.1. Photogrammetry and Mass Balance
4.2. Results of Combined ERT, DP HPT and Sediment Coring
4.3. Simulation Results and Field Evidence
5. Discussion
5.1. Debris Flow Trigger Mechanism
5.2. Modelling Hazard Potential and Transferability
6. Conclusions
- The Biersdorf hillslope debris flow was generated in the area of a normal fault separating the Upper Buntsandstein in the west from the Lower Muschelkalk in the east.
- Unconsolidated slope deposits reach their greatest thickness above the fault zone.
- In the same position, DP HPT logs clearly show a layer of enhanced permeability framed by overlying impermeable periglacial slope deposits and underlying weathered bedrock.
- Based on ERT depth sections, an interflow zone was detected, which is characterized by high infiltration rates east of the fault zone.
- The combination of heavy rainfall, increasing pore water pressure and strong interflow led to destabilization of the sediment cover.
- Surface runoff additionally liquefied the material, transforming the initial translational slide into a widespread hillslope debris flow.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dietze, M.; Ozturk, U. A Flood of Disaster Response Challenges. Science 2021, 373, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Wehinger, A. Hochwasser und Starkregen an der Ahr. Ingenieurgeologen im Einsatz. In Jahresheft des Landesamtes für Geologie und Bergbau Rheinland-Pfalz; ISSN National Centre: Mainz, Germany, 2021; pp. 6–19. [Google Scholar]
- Dietze, M.; Bell, R.; Ozturk, U.; Cook, K.; Andermann, C.; Beer, A.R.; Damm, B.; Lucia, A.; Fauer, F.S.; Nissen, K. More than Heavy Rain Turning into Fast-Flowing Water—A Landscape Perspective on the 2021 Eifel Floods. Nat. Hazards Earth System Sci. 2022, 22C, 1845–1856. [Google Scholar] [CrossRef]
- Hürlimann, M.; McArdell, B.W.; Rickli, C. Field and Laboratory Analysis of the Runout Characteristics of Hillslope Debris Flows in Switzerland. Geomorphology 2015, 232, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Fan, Z.; Xu, W.; Dong, L. Research Progress of Initial Mechanism on Debris Flow and Related Discrimination Methods: A Review. Front. Earth Sci. 2021, 9, 132. [Google Scholar] [CrossRef]
- Carey, J.M.; Cosgrove, B.; Norton, K.; Massey, C.I.; Petley, D.N.; Lyndsell, B. Debris Flow-Slide Initiation Mechanisms in Fill Slopes, Wellington, New Zealand. Landslides 2021, 18, 2061–2072. [Google Scholar] [CrossRef]
- BAFU. Schutz vor Massenbewegungsgefahren—Vollzugshilfe Für Das Gefahrenmanagement von Rutschungen, Steinschlag Und Hangmuren; BAFU: Bern, Switzerland, 2016; pp. 1–98. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Ahmed Bazai, N.; Jiang, H.; Shunyu, Y.; Jinbo, T.; Hu, J.; Shujian, Y.; Qiang, Z.; Ahmed, T.; Jian, G. Dynamic Process of a Typical Slope Debris Flow: A Case Study of the Wujia Gully, Zengda, Sichuan Province, China. Nat. Hazards 2022, 112, 565–586. [Google Scholar] [CrossRef]
- Zimmermann, F.; McArdell, B.W.; Rickli, C.; Scheidl, C. 2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland. Geosciences 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Iverson, R.M.; Vallance, J.W. New Views of Granular Mass Flows. Geology 2001, 29, 115. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, Y.; Li, B.; Wei, T.; Li, Z.; Gao, H. The Role of Fluid Drag Force in the Dynamic Process of Two-Phase Flow-like Landslides. Landslides 2022, 19, 1791–1805. [Google Scholar] [CrossRef]
- Loup, B.; Egli, T.; Stucki, M.; Bartelt, P.; Mcardell, B.W.; Baumann, R. Impact Pressures of Hillslope Debris Flows. In Proceedings of the 12th Congress INTERPRAEVENT, Grenoble, France, 23–26 April 2012; pp. 225–236. [Google Scholar]
- Albaba, A.; Schwarz, M.; Wendeler, C.; Loup, B.; Dorren, L. Numerical Modeling Using an Elastoplastic-Adhesive Discrete Element Code for Simulating Hillslope Debris Flows and Calibration against Field Experiments. Nat. Hazards Earth Syst. Sci. 2019, 19, 2339–2358. [Google Scholar] [CrossRef] [Green Version]
- Hirschberg, J.; Badoux, A.; Mcardell, B.W.; Leonarduzzi, E.; Molnar, P. Limitations of Rainfall Thresholds for Debris-Flow Prediction in an Alpine Catchment. Nat. Hazards Earth Syst. Sci. 2021, 1–26. [Google Scholar] [CrossRef]
- Turconi, L.; Tropeano, D.; Savio, G.; Bono, B.; De, S.K.; Frasca, M.; Luino, F. Torrential Hazard Prevention in Alpine Small Basin through Historical, Empirical and Geomorphological Cross Analysis in NW Italy. Land 2022, 11, 699. [Google Scholar] [CrossRef]
- Pasculli, A.; Cinosi, J.; Turconi, L.; Sciarra, N. Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow. Water 2021, 13, 750. [Google Scholar] [CrossRef]
- Luino, F.; de Graff, J.; Roccati, A.; Biddoccu, M.; Cirio, C.G.; Faccini, F.; Turconi, L. Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 2019, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Hänsel, P.; Kaiser, A.; Buchholz, A.; Böttcher, F.; Langel, S.; Schmidt, J.; Schindewolf, M. Mud Flow Reconstruction by Means of Physical Erosion Modeling, High-Resolution Radar-Based Precipitation Data, and UAV Monitoring. Geosciences 2018, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, U.; Wendi, D.; Crisologo, I.; Riemer, A.; Agarwal, A.; Vogel, K.; López-Tarazón, J.A.; Korup, O. Rare Flash Floods and Debris Flows in Southern Germany. Sci. Total Environ. 2018, 626, 941–952. [Google Scholar] [CrossRef]
- Hagge-Kubat, T.; Wehinger, A.; Enzmann, F. Simulation von Abfluss und Sedimenttransport bei Starkregenereignissen im Oberen Mittelrheintal. Mainz. Geowiss. Mitt. 2020, 48, 7–32. [Google Scholar]
- Meyer, W.; Stets, J. Quaternary Uplift in the Eifel Area. In Mantle Plumes: A Multidisciplinary Approach; Spinger: Berlin/Heidelberg, Germany, 2007; pp. 369–378. [Google Scholar] [CrossRef]
- DWD Climate Data Center (CDC): Sum of Daily Precipitation Grids for Germany. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/radolan/historical/bin/2021/ (accessed on 28 March 2022).
- DWD. RCC Node-CM Product Description Sheet Soil Moisture; DWD: Offenbach, Germany, 2019.
- Dittrich, D. Geologische Karte der Trierer Bucht; Landesamt Für Geologie und Bergbau Rheinland-Pfalz: Mainz, Germany, 2011.
- Junghänel, T.; Bissolli, P.; Daßler, J.; Fleckenstein, R.; Imbery, F.; Janssen, W.; Kaspar, F.; Lengfeld, K.; Leppelt, T.; Rauthe, M. Hydro-Klimatologische Einordnung Der Stark-Und Dauerniederschläge in Teilen Deutschlands im Zusammenhang Mit Dem Tiefdruckgebiet “Bernd” Vom 12. Bis 19. Juli 2021; DWD: Offenbach, Germany, 2021.
- Wetterstation Wiersdorf. Hourly Values from 14 July 2021. Available online: https://www.wetter.rlp.de/Internet/AM/NotesAM.nsf/cc619a07ed6c4634c1257800003dca56/aa9e20fdb31309e4c1257171002e8a4e?OpenDocument&TableRow=2.1.1,2.3#2.1 (accessed on 28 March 2022).
- DWD Climate Data Center (CDC): Daily Grids of Soil Moisture under Grass and Sandy Loam for Germany. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/soil_moist/ (accessed on 28 March 2022).
- Kirkby, M.J. Infiltration, through Flow, and Overland Flow. Introd. Fluv. Processes 2019, 3, 85–97. [Google Scholar] [CrossRef]
- Rahardjo, H.; Lee, T.T.; Leong, E.C.; Rezaur, R.B. Response of a Residual Soil Slope to Rainfall. Can. Geotech. J. 2005, 42, 340–351. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Maset, E.; Fusiello, A.; Cazorzi, F. 4D-SFM Photogrammetry for Monitoring Sediment Dynamics in a Debris-Flow Catchment: Software Testing and Results Comparison. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018, 42, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.H.; Barker, R. RES2Dinv Software; Geotomo Software Company: Huston, TX, USA, 2004. [Google Scholar]
- Obrocki, L.; Vött, A.; Wilken, D.; Fischer, P.; Willershäuser, T.; Koster, B.; Lang, F.; Papanikolaou, I.; Rabbel, W.; Reicherter, K. Tracing Tsunami Signatures of the AD 551 and AD 1303 Tsunamis at the Gulf of Kyparissia (Peloponnese, Greece) Using Direct Push in Situ Sensing Techniques Combined with Geophysical Studies. Sedimentology 2020, 67, 1274–1308. [Google Scholar] [CrossRef]
- Fischer, P.; Jöris, O.; Fitzsimmons, K.E.; Vinnepand, M.; Prud’homme, C.; Schulte, P.; Hatté, C.; Hambach, U.; Lindauer, S.; Zeeden, C.; et al. Millennial-Scale Terrestrial Ecosystem Responses to Upper Pleistocene Climatic Changes: 4D-Reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany). Catena 2021, 196, 104913. [Google Scholar] [CrossRef]
- Wunderlich, T.; Fischer, P.; Wilken, D.; Hadler, H.; Erkul, E.; Mecking, R.; Günther, T.; Heinzelmann, M.; Vött, A.; Rabbel, W. Constraining Electric Resistivity Tomography by Direct Push Electric Conductivity Logs and Vibracores: An Exemplary Study of the Fiume Morto Silted Riverbed (Ostia Antica, Western Italy). Geophysics 2018, 83, B87–B103. [Google Scholar] [CrossRef]
- Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P. Guidelines for Soil Description; FAO: Rome, Italy, 2006. [Google Scholar]
- Neteler, M.; Mitasova, H. Open Source GIS: A GRASS GIS Approach; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mitasova, H.; Thaxton, C.; Hofierka, J.; McLaughlin, R.; Moore, A.; Mitas, L. Path Sampling Method for Modeling Overland Water Flow, Sediment Transport, and Short Term Terrain Evolution in Open Source GIS. Dev. Water Sci. 2004, 55, 1479–1490. [Google Scholar] [CrossRef]
- Hofierka, J.; Knutová, M. Simulating Spatial Aspects of a Flash Flood Using the Monte Carlo Method and GRASS GIS: A Case Study of the Malá Svinka Basin (Slovakia). Open Geosci. 2015, 7, 118–125. [Google Scholar] [CrossRef]
- LGB Soil Data: BFD 5. Available online: https://mapclient.lgb-rlp.de/?app=lgb&view_id=19 (accessed on 28 March 2022).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Wichmann, V. The Gravitational Process Path (GPP) Model (v1.0)—A GIS-Based Simulation Framework for Gravitational Processes. Geosci. Model Dev. 2017, 10, 3309–3327. [Google Scholar] [CrossRef] [Green Version]
- Goetz, J.; Kohrs, R.; Parra Hormazábal, E.; Bustos Morales, M.; Araneda Riquelme, M.B.; Henríquez, C.; Brenning, A. Optimizing and Validating the Gravitational Process Path Model for Regional Debris-Flow Runout Modelling. Nat. Hazards Earth Syst. Sci. 2021, 21, 2543–2562. [Google Scholar] [CrossRef]
- Wyss, R.; Strickler, B. Aspekte der Beurteilung spontaner Rutschungen und Hangmuren. Ingenieurbiologie. 2020, 3, 29–36. [Google Scholar]
- Haas, F.; Heckamnn, T.; Hilger, L.; Becht, M. Quantification and Modelling of Debris Flows in the Proglacial Area of the Gepatschferner/Austria Using Ground-Based LIDAR. In Erosion and Sediment Yields in the Changing Environment: Proceedings of an IAHS International Commission on Continental Erosion Symposium Chengdu, China, 11–15 October 2012; IAHS: Wallingford, UK, 2012; pp. 293–302. [Google Scholar]
- Kofler, C.; Mair, V.; Comiti, F.; Zebisch, M.; Schneiderbauer, S.; Steger, S. Towards a Sediment Transfer Capacity Index of Rock Glaciers: Examples from Two Catchments in South Tyrol, (Eastern Italian Alps). Catena 2022, 216, 106329. [Google Scholar] [CrossRef]
- Gamma, P. Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. Ph.D. Thesis, University of Bern, Bern, Switzerland, 2000. [Google Scholar]
- Perla, R.; Cheng, T.T.; McClung, D.M. A Two–Parameter Model of Snow–Avalanche Motion. J. Glaciol. 1980, 26, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Rickli, C.; Kamm, S.; Bucher, H. Flachgründige Rutschungen. Projektbericht Ereignisanalyse Hochwasser 2005 Zuhanden des Bundesamtes Für Umwelt BAFU; BAFU: Bern, Switzerland, 2008; pp. 1–114. [Google Scholar]
- Rickenmann, D. Runout Prediction Methods. In Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2005; pp. 305–324. [Google Scholar]
Input Parameters | Specifications/Values | Data Source |
---|---|---|
DEM | 1 × 1 m | ALS flight mission 2018 |
Rainfall intensity | 10.8 mm/h | Wiersdorf weather data [27] |
Infiltration rate | 0.5 mm/h | saturation model [28], estimation |
Manning’s roughness coefficient | Landcover based- spatially distributed | Orthophotography, [40] |
Iterations | 60 min | Wiersdorf weather data [27] |
Walkers | 10,000 | - |
Input Parameters | Specifications/Values | Data Source |
---|---|---|
DEM | 1 × 1 m | ALS flight mission 2018 |
Process path model | Random walk | [47] |
Slope threshold | 40 | [42] |
Lateral spreading exponent | 2 | [42] |
Persistence factor | 1.5 | [42] |
Runout model | PCM | [48] |
Source areas | Index grid | HDI [44] |
Initial material thickness source areas | 3–5 m | BK 50 (Soil Data, LGB [40]) and Field Investigation |
SF coefficient (μ) | 0.22–0.46 | Field Investigation and [43,46] |
Mass to drag ratio (m/d) | 60 m | Field Investigation and [43] |
Initial velocity | 0.5 m/s | - |
Iterations | 1000 | - |
Sediment Unit (SU) | Description |
---|---|
Ia | topsoil, clayey silt, dark brown, soft, non-calcareous, humous, charcoal and root fragments, sand- and claystone debris |
Ib | topsoil, clayey silt, greyish brown, soft, non-calcareous, weakly humous, charcoal and root fragments, sand- and limestone debris |
Ic | topsoil, clayey silt, dark greyish brown, soft, non-calcareous, humous, root fragments |
II | periglacial slope deposits, clayey silt to silty clay, reddish brown, slightly hard, non-calcareous, rich in sandstone debris |
III | periglacial slope deposits, clayey silt to silty clay, reddish brown, hard (dense), non-calcareous, including little sandstone debris |
Iva | weathered bedrock, clay, reddish brown, extremely hard, non-calcareous |
Ivb | weathered bedrock, clay, purple grey, extremely hard, slightly calcareous, solid limestone at its base |
V | colluvial deposits, clayey silt, reddish grey-brown, soft, non-calcareous, weakly humous, including little sandstone debris, charcoal and root fragments |
VI | periglacial slope deposits, clayey to silty sand, reddish grey, loose to slightly hard (porous), non-calcareous, sandstone debris |
VII | periglacial slope deposits, limestone debris (yellowish-grey) and intercalated, thin clayey silt layers (brown), loose (porous) to slightly hard (clayey silt layers), slightly calcareous |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagge-Kubat, T.; Fischer, P.; Süßer, P.; Rotter, P.; Wehinger, A.; Vött, A.; Enzmann, F. Multi-Methodological Investigation of the Biersdorf Hillslope Debris Flow (Rheinland-Pfalz, Germany) Associated to the Torrential Rainfall Event of 14 July 2021. Geosciences 2022, 12, 245. https://doi.org/10.3390/geosciences12060245
Hagge-Kubat T, Fischer P, Süßer P, Rotter P, Wehinger A, Vött A, Enzmann F. Multi-Methodological Investigation of the Biersdorf Hillslope Debris Flow (Rheinland-Pfalz, Germany) Associated to the Torrential Rainfall Event of 14 July 2021. Geosciences. 2022; 12(6):245. https://doi.org/10.3390/geosciences12060245
Chicago/Turabian StyleHagge-Kubat, Teemu, Peter Fischer, Philip Süßer, Philipp Rotter, Ansgar Wehinger, Andreas Vött, and Frieder Enzmann. 2022. "Multi-Methodological Investigation of the Biersdorf Hillslope Debris Flow (Rheinland-Pfalz, Germany) Associated to the Torrential Rainfall Event of 14 July 2021" Geosciences 12, no. 6: 245. https://doi.org/10.3390/geosciences12060245
APA StyleHagge-Kubat, T., Fischer, P., Süßer, P., Rotter, P., Wehinger, A., Vött, A., & Enzmann, F. (2022). Multi-Methodological Investigation of the Biersdorf Hillslope Debris Flow (Rheinland-Pfalz, Germany) Associated to the Torrential Rainfall Event of 14 July 2021. Geosciences, 12(6), 245. https://doi.org/10.3390/geosciences12060245