Latest Pleistocene and Holocene Floodplain Evolution in Central Europe—Insights from the Upper Unstrut Catchment (NW-Thuringia/Germany)
Abstract
:1. Introduction
2. Study Area
2.1. Environmental Setting
2.2. Fundamentals on Unstrut River History
2.3. Archaeo-Historical Setting
3. Materials and Methods
3.1. Electrical Resistivity Tomography (ERT)
3.2. Drilling Campaigns
3.3. Positioning and Surface Levelling
3.4. Laboratory Methods
3.5. Numerical Dating
4. Results
4.1. Electrical Resistivity Profiling
4.2. Stratigraphic Results
4.2.1. Hillslope Deposits
Gravelly to Sandy Sediments (Interpreted as Slope Debris)
Predominantly Silty Sediments (Interpreted as Loess and Loess Derivate)
Silty and Sandy Sediments (Interpreted as Colluvial Deposits)
4.2.2. Varved Silty and Sandy Sediments (Interpreted as Proglacial Lake Deposits)
4.2.3. Fluvial Deposits
Matrix-Supported Gravels (Interpreted as Fluvial Bedload Deposits)
Peat and Tufa Deposits (“Rieth Series” Deposits)
Predominantly Silty Sediments (Interpreted as Overbank Floodplain Deposits)
- (I)
- Basal overbank fines
- (II)
- Overbank fines intercalated with peat and tufa (“rieth series”)
- (III)
- Organic overbank fines covering peat and tufa (“rieth series”)
- (IV)
- Uppermost overbank fines
Paleochannel Deposits
4.3. Chronological Results
4.3.1. Radiocarbon Dating
4.3.2. Luminescence Dating
5. Discussion
5.1. Floodplain Evolution
5.1.1. Younger Dryas to Preboreal Gravel Deposition
5.1.2. Preboreal to Early Atlantic Overbank Deposition and Soil Formation
5.1.3. Early Atlantic to Late Subboreal Rieth Formation with Intercalated Overbank Fines
5.1.4. Late Subboreal to Early Subatlantic Overbank Deposition
5.1.5. Latest Holocene Overbank Deposition and Colluviation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, P.; Jöris, O.; Fitzsimmons, K.E.; Vinnepand, M.; Prud’homme, C.; Schulte, P.; Hatté, C.; Hambach, U.; Lindauer, S.; Zeeden, C.; et al. Millennial-scale terrestrial ecosystem responses to Upper Pleistocene climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany). Catena 2021, 196, 104913. [Google Scholar] [CrossRef]
- Theuerkauf, M.; Blume, T.; Brauer, A.; Dräger, N.; Feldens, P.; Kaiser, K.; Kappler, C.; Kästner, F.; Lorenz, S.; Schmidt, J.; et al. Holocene lake-level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes. Boreas 2022, 51, 299–316. [Google Scholar] [CrossRef]
- Kaiser, K.; Lorenz, S.; Germer, S.; Joschus, O.; Küster, M.; Libra, J.; Bens, O.; Hüttl, R. Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact—An overview. EG Quat. Sci. J. 2012, 61, 103–132. [Google Scholar] [CrossRef]
- Ghilardi, M.; Cordier, S.; Carozza, J.-M.; Psomiadis, D.; Guilaine, J.; Zomeni, Z.; Demory, F.; Delanghe-Sabatier, D.; Vella, M.-A.; Bony, G.; et al. The Holocene fluvial history of the Tremithos river (south central Cyprus) and its linkage to archaeological records. Environ. Archaeol. 2015, 20, 184–201. [Google Scholar] [CrossRef]
- Kirchner, A.; Nehren, U.; Behling, H.; Heinrich, J. Mid- and Late Holocene fluvial dynamics in the tropical Guapi—Macacu catchment, Southeast Brazil: The role of climate change and human impact. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 308–318. [Google Scholar] [CrossRef]
- von Suchodoletz, H.; Menz, M.; Kühn, P.; Sukhishvili, L.; Faust, D. Fluvial sediments of the Algeti River in southeastern Georgia —An archive of Late Quaternary landscape activity and stability in the Transcaucasian region. Catena 2016, 130, 95–107. [Google Scholar] [CrossRef]
- Faust, D.; Wolf, D. Interpreting drivers of change in fluvial archives of the Western Mediterranean—A critical view. Earth-Sci. Rev. 2017, 174, 53–83. [Google Scholar] [CrossRef]
- Depreux, B.; Lefèvre, D.; Berger, J.-F.; Segaoui, F.; Boudad, L.; El Harradji, A.; Degeai, J.-P.; Limondin-Lozouet, N. Alluvial records of the African Humid Period from the NW African highlands (Moulouya basin, NE Morocco). Quat. Sci. Rev. 2021, 255, 106807. [Google Scholar] [CrossRef]
- Kalis, A.J.; Merkt, J.; Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe—Human impact and natural causes. Quat. Sci. Rev. 2003, 22, 33–79. [Google Scholar] [CrossRef]
- Hoffmann, T.; Lang, A.; Dikau, R. Holocene river activity: Analysing 14C-dated fluvial and colluvial sediments from Germany. Quat. Sci. Rev. 2008, 27, 2031–2040. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G. Sensitivity of West and Central European river systems to environmental changes during the Holocene: A review. Earth-Sci. Rev. 2010, 103, 163–182. [Google Scholar] [CrossRef]
- Brown, A.G.; Lespez, L.; Sear, D.A.; Macaire, J.-J.; Houben, P.; Klimek, K.; Brazier, R.E.; Van Oost, K.; Pears, B. Natural vs. anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Sci. Rev. 2018, 180, 185–205. [Google Scholar] [CrossRef]
- Stouthamer, E.; Berendsen, H.J.A. Avulsion: The relative roles of autogenic and allogenic processes. Sediment. Geology 2007, 198, 309–325. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Cordier, S.; Bridgland, D. Extrinsic and intrinsic forcing of fluvial development: Understanding natural and anthropogenic influences. Proc. Geol. Assoc. 2010, 121, 107–112. [Google Scholar] [CrossRef]
- Van De Wiel, M.J.; Coulthard, T.J. Self-organized criticality in river basins: Challenging sedimentary records of environmental change. Geology 2010, 38, 87–90. [Google Scholar] [CrossRef]
- Houben, P.; Schmidt, M.; Mauz, B.; Stobbe, A.; Lang, A. Asynchronous Holocene colluvial and alluvial aggradation: A matter of hydrosedimentary connectivity. Holocene 2013, 23, 544–555. [Google Scholar] [CrossRef]
- Notebaert, B.; Broothaerts, N.; Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Glob. Planet. Chang. 2018, 164, 27–38. [Google Scholar] [CrossRef]
- Rommens, T.; Verstraeten, G.; Poesen, J.; Govers, G.; Van Rompaey, A.; Peeters, I. Soil erosion and sediment deposition in the Belgian loess belt during the Holocene: Establishing a sediment budget for a small agricultural catchment. Holocene 2005, 15, 1032–1043. [Google Scholar] [CrossRef]
- Broothaerts, N.; Notebaert, B.; Verstraeten, G.; Kasse, C.; Bohncke, S.; Vandenberghe, J. Non-uniform and diachronous Holocene floodplain evolution: A case study from the Dijle catchment, Belgium. J. Quat. Sci. 2014, 29, 351–360. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G.; Rommens, T.; Vanmontfort, B.; Govers, G.; Poesen, J. Establishing a Holocene sediment budget for the river Dijle. Catena 2009, 77, 150–163. [Google Scholar] [CrossRef]
- Pastre, J.-F.; Limondin-Lozouet, N.; Gebhardt, A.; Leroyer, C.; Fontugne, M.; Krier, V. Lateglacial and Holocene fluvial records from the central part of the Paris Basin (France). In River Basin Sediment Systems—Archives of Environmental Change; Maddy, D., Macklin, M.G., Woodward, J.C., Eds.; Balkema: Rotterdam, The Netherlands, 2001; pp. 357–373. ISBN 9789058093424. [Google Scholar]
- Lespez, L.; Clet-Pellerin, M.; Limondin-Lozouet, N.; Pastre, J.-F.; Fontugne, M.; Marcigny, C. Fluvial system evolution and environmental changes during the Holocene in the Mue valley (Western France). Geomorphology 2008, 98, 55–70. [Google Scholar] [CrossRef]
- Andres, W.; Bos, J.A.A.; Houben, P.; Kalis, A.J.; Nolte, S.; Rittweger, H.; Wunderlich, J. Environmental change and fluvial activity during the Younger Dryas in Central Germany. Quat. Int. 2001, 79, 89–100. [Google Scholar] [CrossRef]
- Houben, P. Sediment budget for five millennia of tillage in the Rockenberg catchment (Wetterau loess basin, Germany). Quat. Sci. Rev. 2012, 52, 12–23. [Google Scholar] [CrossRef]
- Houben, P. Scale linkage and contingency effects of field-scale and hillslope-scale controls of long-term soil erosion: Anthropogeomorphic sediment flux in agricultural loess watersheds of southern Germany. Geomorphology 2008, 101, 172–191. [Google Scholar] [CrossRef]
- Schmidt-Wygasch, C.; Schamuhn, S.; Meurers-Balke, J.; Lehmkuhl, F.; Gerlach, R. Indirect Dating of Historical Land Use Through Mining: Linking Heavy Metal Analyses of Fluvial Deposits to Archaeobotanical Data and Written Accounts. Geoarchaeology 2010, 25, 837–857. [Google Scholar] [CrossRef]
- Tinapp, C.; Meller, H.; Baumhauer, R. Holocene accumulation of colluvial and alluvial sediments in the Weiße Elster River valley in Saxony, Germany. Archaeometry 2008, 50, 696–709. [Google Scholar] [CrossRef]
- Tinapp, C.; Heinrich, S.; Herbig, C.; Schneider, B.; Stäuble, H.; Miera, J.; von Suchodoletz, H. Holocene floodplain evolution in a central European loess landscape—geoarchaeological investigations of the lower Pleiße valley in NW-Saxony. EG Quat. Sci. J. 2019, 68, 95–105. [Google Scholar] [CrossRef]
- Ballasus, H.; Schneider, B.; von Suchodoletz, H.; Miera, J.; Werban, U.; Fütterer, P.; Werther, L.; Ettel, P.; Veit, U.; Zielhofer, C. Overbank silt-clay deposition and intensive Neolithic land use in a Central European catchment—Coupled or decoupled? Sci. Total Environ. 2022, 806, 150858. [Google Scholar] [CrossRef]
- von Suchodoletz, H.; Pohle, M.; Khosravichenar, A.; Ulrich, M.; Hein, M.; Tinapp, C.; Schultz, J.; Ballasus, H.; Veit, U.; Ettel, P.; et al. The fluvial architecture of buried floodplain sediments of the Weiße Elster River (Germany) revealed by a novel method combination of core drillings with 2D and 3D geophysical measurements. Earth Surf. Process. Landf. 2022, 47, 955–976. [Google Scholar] [CrossRef]
- Starkel, L. Role of climatic and anthropogenic factors accelerating soil erosion and fluvial activity. Stud. Quat. 2005, 22, 27–33. [Google Scholar]
- Starkel, L.; Kalicki, T.; Krapiec, M.; Soja, R.; Gebica, P.; Czyzowska, E. Hydrological changes of valley floors in upper Vistula basin during late Vistulian and Holocene. In Evolution of the Vistula River Valley During the Last 15000 Years; Starkel, L., Ed.; Geographical Studies: Wrocław, Poland, 1996; pp. 7–128. [Google Scholar]
- Langbein, R. Keuper. Geologie von Thüringen, 3rd ed.; Seidel, G., Ed.; Schweizerbart: Stuttgart, Germany, 2003; pp. 357–391. ISBN 9783510652051. [Google Scholar]
- Lehmkuhl, F.; Nett, J.J.; Pötter, S.; Schulte, P.; Sprafke, T.; Jary, Z.; Antoine, P.; Wacha, L.; Wolf, D.; Zerboni, A.; et al. Loess landscapes of Europe—Mapping, geomorphology, and zonal differentiation. Earth-Sci. Rev. 2021, 215, 103496. [Google Scholar] [CrossRef]
- Zöller, L.; Rousseau, D.-D.; Jäger, K.-D.; Kukla, G. Last interglacial, Lower and Middle Weichselian—A comparative study from the Upper Rhine and Thuringian loess areas. Z. Geomorphol. 2004, 48, 1–24. [Google Scholar] [CrossRef]
- Schramm, H.A. Böden. In Geologie von Thüringen, 3rd ed.; Seidel, G., Ed.; Schweizerbart: Stuttgart, Germany, 2003; pp. 530–548. ISBN 9783510652051. [Google Scholar]
- Karaschewski, J.; Kirchner, A. Erste Ergebnisse zur Bodenentwicklung und Kolluviationsgeschichte am ”Kobenkopf” (Unstrut-Hainich-Kreis). Mühlhäuser Beiträge 2018, 41, 73–90. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Hiekel, W.; Tinz, B. Klima. In Der Hainich. Eine landeskundliche Bestandsaufnahme im Raum Mühlhausen, Bad Langensalza, Schlotheim, Großengottern, Mihla und Behringen; Großmann, M., John, U., Porada, H.T., Eds.; Landschaften in Deutschland 77; Böhlau Verlag: Köln/Weimar, Germany, 2018; pp. 23–27. ISBN 9783412223007. [Google Scholar]
- Militzer, S.; Glaser, R. Die Thüringische Sintflut von 1613. Z. Ver. Thüringische Gesch. 1994, 48, 69–92. [Google Scholar]
- Deutsch, M.; Pörtge, K.H. Hochwasser in Thüringen. Ursachen, Verlauf und Schäden Extremer Abflussereignisse (1500–2015); Schriftenreihe der Thüringer Landesanstalt für Umwelt und Geologie (TLUG): Jena, Germany, 2017; p. 113. [Google Scholar]
- Jäger, K.-D. Über Alter und Ursachen der Auelehmablagerung thüringischer Flüsse. Prähistorische Zeitschrift 1962, 40, 1–59. [Google Scholar] [CrossRef]
- Lange, E.; Schultz, A. Pollenanalytische Datierung spätglazialer und holozäner Sedimente im Zentralen Thüringer Becken. Wiss. Zeitschr. Univ. Jena Math—Nat. Reihe 1965, 14, 45–53. [Google Scholar]
- Unger, K.P.; Rau, D. Zur Gliederung und Entwicklung der rezenten Talauen des zentralen Thüringer Beckens—Ergebnisse der geologisch-bodenkundlichen Aufnahme des Meßtischblattes Weißensee. Jahrbuch Geol. 1965, 1, 395–410. [Google Scholar]
- Kliewe, H.; Schultz, A. Zur Talgenese seit dem Spätglazial im inneren Thüringer Becken. Acta Geogr. Debrecina 1968, T XIV, 115–123. [Google Scholar]
- Suderlau, G. Jungquartäre Ablagerungen in den Senken des Raumes Eisleben—Artern—Bad Frankenhausen. Hercynia N.F. 1975, 12, 228–255. [Google Scholar]
- Bischoff, R. Untersuchungen an spätglazialen und holozänen Auensedimenten des Unstruttals im Bereich des zentralen Thüringer Beckens. Geowissenschaftliche Mitteilungen Thüringen 1999, 7, 127–141. [Google Scholar]
- Unger, K.P. Quartär. In Geologie von Thüringen, 3rd ed.; Seidel, G., Ed.; Schweizerbart: Stuttgart, Germany, 2003; pp. 424–443. ISBN 9783510652051. [Google Scholar]
- Küßner, M. Erster Bericht zu den Gräbern der Linienbandkeramik mit Spondylus-Artefakten von Höngeda (Unstrut-Hainich-Kreis). Mühlhäuser Beiträge 2017, 40, 49–62. [Google Scholar]
- Walther, W. Archäologie. In Der Hainich. Eine landeskundliche Bestandsaufnahme im Raum Mühlhausen, Bad Langensalza, Schlotheim, Großengottern, Mihla und Behringen; Großmann, M., John, U., Porada, H.T., Eds.; Landschaften in Deutschland 77; Böhlau Verlag: Köln/Weimar, Germany, 2018; pp. 60–71. ISBN 9783412223007. [Google Scholar]
- Schirmer, U. Historische Entwicklung im Mittelalter. In Der Hainich. Eine landeskundliche Bestandsaufnahme im Raum Mühlhausen, Bad Langensalza, Schlotheim, Großengottern, Mihla und Behringen; Großmann, M., John, U., Porada, H.T., Eds.; Landschaften in Deutschland 77; Böhlau Verlag: Köln/Weimar, Germany, 2018; pp. 71–84. ISBN 9783412223007. [Google Scholar]
- Bork, H.R.; Bork, H.; Dalchow, C.; Faust, B.; Piorr, H.P.; Schatz, T. Landschaftsentwicklung in Mitteleuropa—Wirkung des Menschen auf Landschaften; Klett-Perthes: Gotha, Germany, 1998; p. 328. ISBN 9783623008493. [Google Scholar]
- Schirmer, U. Neuzeitliche Entwicklung bis 1800. In Der Hainich. Eine landeskundliche Bestandsaufnahme im Raum Mühlhausen, Bad Langensalza, Schlotheim, Großengottern, Mihla und Behringen; Großmann, M., John, U., Porada, H.T., Eds.; Landschaften in Deutschland 77; Böhlau Verlag: Köln/Weimar, Germany, 2018; pp. 84–89. ISBN 9783412223007. [Google Scholar]
- Schöne, J. Die Landwirtschaft der DDR 1945–1990; Landeszentrale für Politische Bildung Thüringen: Erfurt, Germany, 2015; p. 80. ISBN 393142690-4. [Google Scholar]
- Behm-Blancke, G.; Jacob, H.; Ullrich, H.; Eberhardt, H. Heiligtümer der Germanen und Ihrer Vorgänger in Thüringen: Die Kultstätte Oberdorla: Forschungen zum Alteuropäischen Religions-und Kultwesen. Weimarer Monographien zur Ur- und Frühgeschichte 38; Konrad Theiss: Stuttgart, Germany, 2003; p. 280. ISBN 3806218110. [Google Scholar]
- Knödel, K.; Krummel, H.; Lange, G. Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten—Band 3: Geophysik, 2nd ed.; Bundesanstalt für Geowissenschaften und Rohstoffe; Springer: Berlin/Heidelberg, Germany, 2005; p. 1063. ISBN 9783662077245. [Google Scholar]
- Rücker, C.; Günther, T.; Wagner, F.M. pyGIMLi: An open-source library for modelling and inversion in geophysics. Comput. Geosci. 2017, 109, 106–123. [Google Scholar] [CrossRef]
- Karaschewski, J. Auensedimente als Geoarchiv der Landschaftsgeschichte–Ein Fallbeispiel aus dem Oberen Unstruteinzugsgebiet (NW-Thüringen). Master’s Thesis, University of Hildesheim, Hildesheim, Germany, 2016; p. 87, unpuplished Masterthesis. [Google Scholar]
- Ad-hoc-Arbeitsgruppe Boden. Bodenkundliche Kartieranleitung, 5th ed.; Schweizerbart Science Publishers: Stuttgart, Germany, 2005; ISBN 9783510959204. [Google Scholar]
- Munsell Color Company. Munsell Soil Color Charts; Revised Edition; Macbeth Division of Kollmorgen: New Windsor, NY, USA, 1994. [Google Scholar]
- Eckmeier, E.; Egli, M.; Schmidt, M.W.I.; Schlumpf, N.; Nötzli, M.; Minikus-Stary, N.; Hagedorn, F. Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps. Geoderma 2010, 159, 147–155. [Google Scholar] [CrossRef]
- Zeeden, C.; Krauß, L.; Kels, H.; Lehmkuhl, F. Digital image analysis of outcropping sediments: Comparison to photospectrometric data from Quaternary loess deposits at Şanoviţa (Romania) and Achenheim (France). Quat. Int. 2017, 429, 100–107. [Google Scholar] [CrossRef]
- Sprafke, T. Löss in Niederösterreich. Archiv quartärer Klima- und Landschaftsveränderungen; Würzburg University Press: Würzburg, Germany, 2016; p. 272. [Google Scholar] [CrossRef]
- Thielicke, G. Zusammenstellung einiger wichtiger bodenchemischer und –mechanischer Laboratoriumsmethoden, ihre Anwendungen, Ergebnisdarstellungen und Fehlerquellen. Geologisches Jahrbuch Hessen 1987, 115, 423–448. [Google Scholar]
- Blume, H.-P.; Stahr, K.; Leinweber, P. Bodenkundliches Praktikum, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2011; p. 255. [Google Scholar] [CrossRef]
- DIN ISO 11277; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. Beuth-Verlag: Berlin, Germany, 2002.
- Schulte, P.; Lehmkuhl, F.; Steininger, F.; Loibl, D.; Lockot, G.; Protze, J.; Fischer, P.; Stauch, G. Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess-paleosol-sequences. Catena 2016, 137, 392–405. [Google Scholar] [CrossRef]
- Özer, M.; Orhan, M.; Işik, N.S. Effect of Particle Optical Properties on Size Distribution of Soils Obtained by Laser Diffraction. Environ. Eng. Geosci. 2010, 16, 163–173. [Google Scholar] [CrossRef]
- Schulte, P.; Lehmkuhl, F. The difference of two laser diffraction patterns as an indicator for post-depositional grain size reduction in loess-paleosol sequences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 509, 126–136. [Google Scholar] [CrossRef]
- Hajdas, I. Radiocarbon dating and its applications in Quaternary studies. EG Quat. Sci. J. 2008, 57, 2–24. [Google Scholar] [CrossRef]
- de Vries, H.; Barendsen, G.W. Measurements of age by the carbon-14 technique. Nature 1954, 174, 1138–1141. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat. Meas. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Antoine, P.; Coutard, S.; Guerin, G.; Deschodt, L.; Goval, E.; Locht, J.-L.; Paris, C. Upper Pleistocene loess-palaeosol records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic. Quat. Int. 2016, 411, 4–24. [Google Scholar] [CrossRef]
- Sprafke, T.; Schulte, P.; Meyer-Heintze, S.; Händel, M.; Einwögerer, T.; Simon, U.; Peticzka, R.; Schäfer, C.; Lehmkuhl, F.; Terhorst, B. Paleoenvironments from robust loess stratigraphy using high-resolution color and grain-size data of the last glacial Krems-Wachtberg record (NE Austria). Quat. Sci. Rev. 2020, 248, 106602. [Google Scholar] [CrossRef]
- Semmel, A.; Terhorst, B. The concept of the Pleistocene periglacial cover beds in central Europe: A review. Quat. Int. 2010, 222, 120–128. [Google Scholar] [CrossRef]
- Kleber, A.; Terhorst, B. Mid-Latitude Slope Deposits (Cover Beds); Developments in Sedimentology 66; Elsevier: Amsterdam, The Netherlands; Heidelberg, Germany, 2013; p. 320. ISBN 9780444531186. [Google Scholar]
- Miall, A.D. The Geology of Fluvial Deposits; Springer: Berlin, Germany, 1996; p. 582. [Google Scholar] [CrossRef]
- Charlton, R. Fundamentals of Fluvial Geomorphology; Routledge: London, UK; New York, NY, USA, 2007; p. 264. ISBN 9780415334549. [Google Scholar]
- Geyh, M.A.; Schleicher, H. Absolute Age Determination. Physical and Chemical Dating Methods and Their Application; Springer: Berlin, Germany, 1990; p. 505. [Google Scholar] [CrossRef]
- Warner, R.B. A proposed adjustment for the ‘old wood effect’. In Proceedings of the 2nd Symposium of 14C & Archaeology, Groningen, The Netherlands, 7–11 September 1987; Mook, W., Waterbolk, H., Eds.; PACT 29. 1990; pp. 159–172. [Google Scholar]
- Rasmussen, S.O.; Andersen, K.K.; Svensson, A.M.; Steffensen, J.P.; Vinther, B.M.; Clausen, H.B.; Siggaard-Andersen, M.-L.; Johnsen, S.J.; Larsen, L.B.; Dahl-Jensen, D.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 2006, 111, D6. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, H.; Spötl, C.; Baker, J.; Sinha, A.; Li, H.; Bartolomé, M.; Moreno, A.; Kathayat, G.; Zhao, J.; et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 23408–23417. [Google Scholar] [CrossRef]
- Rohdenburg, H. Landscape Ecology, Geomorphology; Catena: Cremlingen-Destedt, Germany, 1989; p. 220. ISBN 392338114X. Available online: https://www.schweizerbart.de/publications/detail/isbn/9783510653942/Rohdenburg_Landscape_Ecology_Geomorph (accessed on 25 March 2022).
- Blum, M.D.; Törnqvist, T.E. Fluvial responses to climate and sea-level change: A review and look forward. Sedimentology 2000, 47, 2–48. [Google Scholar] [CrossRef]
- Lipps, S. Fluviatile Dynamik im Mittelwesertal während des Spätglazials und Holozäns. EG Quat. Sci. J. 1988, 38, 78–86. [Google Scholar] [CrossRef]
- Mäusbacher, R.; Igl, M.; Schneider, H. Influence of Late Glacial Climate Changes on Sediment Transport in the River Werra (Thuringia, Germany). Quat. Int. 2001, 79, 101–109. [Google Scholar] [CrossRef]
- Boettger, T.; Hiller, A.; Junge, F.W.; Mania, D.; Kremenetski, K. Lateglacial/Early Holocene environmental changes in Thuringia, Germany: Stable isotope record and vegetation history. Quat. Int. 2009, 203, 105–112. [Google Scholar] [CrossRef]
- Breitenbach, S.F.M.; Plessen, B.; Waltgenbach, S.; Tjallingii, R.; Leonhardt, J.; Jochum, K.P.; Scholz, D. Holocene interaction of maritime and continental climate in Central Europe: New speleothem evidence from central Germany. Glob. Planet. Chang. 2019, 176, 144–161. [Google Scholar] [CrossRef]
- Voigt, R.; Grüger, E.; Baier, J.; Meischner, D. Seasonal variability of Holocene climate: A palaeolimnological study on varved sediments in Lake Jues (Harz Mountains, Germany). J. Paleolimnol. 2008, 40, 1021–1052. [Google Scholar] [CrossRef]
- Schneider, H. Die spät- und Postglaziale Vegetationsgeschichte des Oberen und Mittleren Werratales. In Paläobotanische Untersuchungen unter Besonderer Berücksichtigung Anthropogener Einflüsse. Dissertationes Botanicae 403; Gebrüder Borntraeger Verlagsbuchhandlung: Stuttgart, Germany, 2006; p. 229. ISBN 9783443643157. [Google Scholar]
- Nanson, G.C.; Croke, J.C. A genetic classification of floodplains. Geomorphology 1992, 4, 459–486. [Google Scholar] [CrossRef]
- Pretzsch, K. Spätpleistozäne und Holozäne Ablagerungen als Indikator der Fluvialen Morphodynamik im Bereich der Mittleren Leine; Göttinger Geographische Abhandlungen: Göttingen, Germany, 1994; p. 109. ISBN 9783884520994. [Google Scholar]
- Bos, J.A.A.; Urz, R. Lateglacial and early Holocene environment in the middle Lahn river valley (Hessen, central-west Germany) and the local impact of early Mesolithic people—Pollen and macrofossil evidence. Veget. Hist. Archaeobot. 2003, 12, 19–36. [Google Scholar] [CrossRef]
- Urz, R.; Röttger, K.; Thiemeyer, H. Von der Natur- zur Kulturlandschaft. Germania 2002, 80, 269–293. [Google Scholar]
- Dietze, E.; Theuerkauf, M.; Bloom, K.; Brauer, A.; Dörfler, W.; Feeser, I.; Feurdean, A.; Gedminienė, L.; Giesecke, T.; Jahns, S.; et al. Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. Quat. Sci. Rev. 2018, 201, 44–56. [Google Scholar] [CrossRef]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; de Menocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A pervasive millenial-scale cycle in North Atlantic Holocene and glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Rohling, E.E.; Stager, J.C.; Karlén, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Giesecke, T.; Bennett, K.D.; Birks, H.J.B.; Bjune, A.E.; Bozilova, E.; Feurdean, A.; Finsinger, W.; Froyd, C.; Pokorný, P.; Rösch, M.; et al. The pace of Holocene vegetation change—Testing for synchronous developments. Quat. Sci. Rev. 2011, 30, 2805–2814. [Google Scholar] [CrossRef]
- Dreibrodt, S.; Lubos, C.; Terhorst, B.; Damm, B.; Bork, H.-R. Historical soil erosion by water in Germany: Scales and archives, chronology, research perspectives. Quat. Int. 2010, 222, 80–95. [Google Scholar] [CrossRef]
- Alley, R.B.; Mayewski, P.A.; Sowers, T.; Stuiver, M.; Taylor, K.C.; Clark, P.U. Holocene climate instability: A prominent widespread event 8200 yr ago. Geology 1997, 25, 483–486. [Google Scholar] [CrossRef]
- Schulte, P.; Hamacher, H.; Lehmkuhl, F.; Esser, V. Initial soil formation in an artificial river valley—Interplay of anthropogenic landscape shaping and fluvial dynamics. Geomorphology 2022, 398, 108064. [Google Scholar] [CrossRef]
- Amelung, W.; Blume, H.-P.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 17th ed.; Springer: Berlin/Heidelberg, Germany, 2018; p. 750. [Google Scholar]
- Pedley, H. Classification and environmental models of cool freshwater tufas. Sediment. Geology 1990, 68, 143–154. [Google Scholar]
- Jäger, K.-D. Oscillations of the water balance during the Holocene in interior Central Europe—Features, dating and consequences. Quat. Int. 2002, 91, 33–37. [Google Scholar] [CrossRef]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goose, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Luthardt, V.; Schulz, C.; Meier-Uhlher, R. Steckbriefe Moorsubstrate, 2nd ed.; HNE Eberswalde: Berlin, Germany, 2015; p. 154. [Google Scholar] [CrossRef]
- Igl, M. Untersuchungen zur spät- und Postglazialen Fluß- und Landschaftsgenese im Mittleren Werratal unter Besonderer Berücksichtigung von Subrosionssenken. Ph.D. Thesis, University of Jena, Jena, Germany, 2000; p. 280.
- Bebermeier, W.; Holzkämper, P.; Meyer, M.; Schimpf, S.; Schütt, B. Lateglacial to late Holocene landscape history derived from floodplain sediments in context to prehistoric settlement sites of the southern foreland of the Harz Mountains, Germany. Quat. Int. 2018, 463, 74–90. [Google Scholar] [CrossRef]
- Jockenhövel, A. Agrargeschichte der Bronzezeit und vorrömischen Eisenzeit (von ca. 2200 v. Chr. bis Christi Geburt). In Deutsche Agrargeschichte: Vor und Frühgeschichte; Henning, F.-W., Ed.; Ulmer: Stuttgart, Germany, 1997; pp. 141–261. ISBN 9783800130993. [Google Scholar]
- Stolz, C.; Grunert, J.; Fülling, A. Quantification and dating of floodplain sedimentation in a medium-sized catchment of the German uplands: A case study from the Aar Valley in the southern Rhenish Massif, Germany. Erde 2013, 144, 30–50. [Google Scholar] [CrossRef]
- Bell, M.; Walker, M. Late Quaternary Environmental Change, 2nd ed.; Routledge: New York, NY, USA, 2005; p. 348. ISBN 9780130333445. [Google Scholar]
- Büntgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.C.; Trouet, V.; Kaplan, J.O.; Herzig, F.; Heussner, K.-U.; Wanner, H.; et al. 2500 years of European climate variability and human susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-term interaction between humans and the environment—A review. Geomorphology 2008, 101, 192–208. [Google Scholar] [CrossRef]
- Eißing, T.; Dittmar, C. Timber transport and dendroprovenancing in Thuringia and Bavaria. In Tree Rings, Art, Archaeology; Fraiture, P., Ed.; Royal Institute for Cultural Heritage: Brussels, Belgium, 2011; pp. 137–150. ISBN 9782930054131. [Google Scholar]
- Negendank, J.F.W. The Holocene: Considerations with regard to its climate and climate archives. In The Climate in Historical Times. Towards a Synthesis of Holocene Data and Climate Models; Fischer, H., Kumke, T., Lohmann, G., Flösser, G., Miller, H., Storch, H.V., Negendank, J.F.W., Eds.; Springer: Berlin, Germany, 2004; pp. 1–12. ISBN 9783540206019. [Google Scholar]
- Glaser, R. Klimageschichte Mitteleuropas: 1200 Jahre Wetter, Klima, Katastrophen; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2013; p. 277. ISBN 978-3896786043. [Google Scholar]
- Herget, J.; Kapala, A.; Krell, M.; Rustemeier, E.; Simmer, C.; Wyss, A. The millennium flood of July 1342 revisited. Catena 2015, 130, 82–94. [Google Scholar] [CrossRef]
- Bauch, M. St. Mary Magdelene’s Flood (1342) at the intersection of environmental history and the history of infrastructures. NTM Z. Gesch. Wiss. Tech. Med. 2019, 27, 273–309. [Google Scholar] [CrossRef]
Site | Depth (cm) | Lab. No. | Material | 14C Age BP | Cal 14C Age BP (2σ) | δ13C (‰) |
---|---|---|---|---|---|---|
SG19-100 | 70–75 | MAMS 51797 | Charcoal | 224 ± 19 | 230 ± 229 | −28.6 |
UA19_3 | 537 | MAMS 46836 | Plant fragment | 3766 ± 22 | 4120 ± 115 | −25.4 |
UA19_4 | 280–290 | MAMS 50031 * | Sediment | 4891 ± 24 | 5622 ± 37 | −13.0 |
UA19_4 | 345–352 | MAMS 46828 | Sediment | 3192 ± 25 | 3412 ± 42 | −28.6 |
UA19_4 | 474–482 | MAMS 46829 | Sediment | 6153 ± 24 | 7060 ± 98 | −23.3 |
UA19_5 | 225 | MAMS 46824 | Charcoal | 1003 ± 23 | 880 ± 80 | −23.9 |
UA19_5a | 285–295 | MAMS 50032 | Sediment | 2811 ± 21 | 2909 ± 56 | −23.7 |
UA19_5a | 380–390 | MAMS 46830 | Sediment | 4292 ± 22 | 4853 ± 22 | −20.1 |
UA19_5a | 470–500 | MAMS 46831 | Peat | 6189 ± 25 | 7081 ± 85 | −27.3 |
UA19_7 | 175–185 | MAMS 50030 * | Sediment | 4165 ± 22 | 4707 ± 123 | −12.6 |
UA19_7 | 272–278 | MAMS 46832 | Peat | 3153 ± 27 | 3360 ± 88 | −55.4 |
UA19_7 | 325–335 | MAMS 50029 | Sediment | 4269 ± 22 | 4845 ± 18 | −29.1 |
UA19_7 | 402–407 | MAMS 46833 | Peat | 5555 ± 23 | 6348 ± 48 | −25.8 |
UA19_7 | 458–462 | MAMS 50028 | Peat | 6427 ± 25 | 7352 ± 72 | −26.0 |
UA19_7 | 475–482 | MAMS 46834 | Peat | 9667 ± 29 | 11,004 ± 192 | −21.9 |
UA19_8 | 535 | MAMS 46837 | Wood | 6593 ± 25 | 7498 ± 67 | −28.6 |
UA19_8 | 587 | MAMS 46838 | Wood | 6450 ± 25 | 7372 ± 53 | −30.5 |
UA19_8 | 694 | MAMS 46839 | Plant fragment | 10,079 ± 30 | 11,608 ± 205 | −30.8 |
UA19_8a | 55 | MAMS 51798 | Charcoal | 614 ± 20 | 601 ± 49 | −24.0 |
UA19_8a | 67 | MAMS 51799 | Charcoal | 1111 ± 20 | 1009 ± 49 | −27.0 |
UA19_8a | 140 | MAMS 46825 | Charcoal | 2257 ± 25 | 2250 ± 92 | −17.9 |
UA19_8a | 178 | MAMS 46826 * | Charcoal | 5368 ± 30 | 6143 ± 136 | −20.8 |
UA19_8a | 215–217 | MAMS 46835 | Peat | 3576 ± 22 | 3873 ± 97 | −23.0 |
UA19_8a | 363 | MAMS 46840 | Plant fragment | 4467 ± 22 | 5130 ± 153 | −23.4 |
UA19_8a | 418 | MAMS 46841 | plant fragment | 4578 ± 22 | 5256 ± 185 | −21.6 |
UA19_8a | 427 | BETA 624727 | Wood | 4480 ± 30 | 5135 ± 155 | −26.9 |
UA19_8a | 550 | BETA 624725 | Charcoal | >43,500 | −24.8 | |
UA19_9 | 195 | MAMS 46827 | Charcoal | 2440 ±20 | 2529 ± 168 | −21.4 |
See16 | 259–273 | BETA 457185 | Plant material | 3310 ± 30 | 3536 ± 83 | −26.0 |
See16 | 404–409 | BETA 457182 | Plant material | 7680 ± 30 | 8474 ± 67 | −26.4 |
Gro16 | 430 | BETA 457184 | Plant material | 5640 ± 30 | 6404 ± 88 | −25.6 |
Gro16 | 470–480 | BETA 457183 | Plant material | 6100 ± 30 | 7007 ± 151 | −26.2 |
Site | Depth (cm) | Lab. No. | Dose Rate (mGy/a) | Equivalent Dose (Gy) | Age (ka) |
---|---|---|---|---|---|
SG19_1a | 55–61 | L-Eva 1955 | 3.13 ± 0.18 | 2.15 ± 0.20 | 0.69 ± 0.07 |
SG19_1a | 84–90 | L-Eva 1956 | 3.48 ± 0.20 | 2.12 ± 0.10 | 0.61 ± 0.05 |
SG19_1a | 102–108 | L-Eva 1957 | 3.62 ± 0.21 | 2.64 ± 0.52 | 0.73 ± 0.15 |
SG19_1a | 120–126 | L-Eva 1958 | 3.29 ± 0.18 | 2.49 ± 0.50 | 0.76 ± 0.16 |
SG19_1a | 145–150 | L-Eva 1959 | 2.83 ± 0.14 | 3.33 ± 0.50 | 1.18 ± 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirchner, A.; Karaschewski, J.; Schulte, P.; Wunderlich, T.; Lauer, T. Latest Pleistocene and Holocene Floodplain Evolution in Central Europe—Insights from the Upper Unstrut Catchment (NW-Thuringia/Germany). Geosciences 2022, 12, 310. https://doi.org/10.3390/geosciences12080310
Kirchner A, Karaschewski J, Schulte P, Wunderlich T, Lauer T. Latest Pleistocene and Holocene Floodplain Evolution in Central Europe—Insights from the Upper Unstrut Catchment (NW-Thuringia/Germany). Geosciences. 2022; 12(8):310. https://doi.org/10.3390/geosciences12080310
Chicago/Turabian StyleKirchner, André, Jasmin Karaschewski, Philipp Schulte, Tina Wunderlich, and Tobias Lauer. 2022. "Latest Pleistocene and Holocene Floodplain Evolution in Central Europe—Insights from the Upper Unstrut Catchment (NW-Thuringia/Germany)" Geosciences 12, no. 8: 310. https://doi.org/10.3390/geosciences12080310
APA StyleKirchner, A., Karaschewski, J., Schulte, P., Wunderlich, T., & Lauer, T. (2022). Latest Pleistocene and Holocene Floodplain Evolution in Central Europe—Insights from the Upper Unstrut Catchment (NW-Thuringia/Germany). Geosciences, 12(8), 310. https://doi.org/10.3390/geosciences12080310