Advances in Cellulose-Based Hydrogels (4th Edition)

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: 30 November 2026 | Viewed by 655

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy
Interests: hydrogels; gels; natural polymers; biopolymers; biomaterials; responsive polymers; smart polymers; cellulose; cellulose derivatives; materials characterization; rheology; scaffold; biomedical; tissue engineering; regenerative medicine
Special Issues, Collections and Topics in MDPI journals
Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Interests: nanocellulose; sustainability; heterogeneous catalysis; water remediation; nanostructured materials; waste valorization; sensing; packaging; circular economy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
Interests: biomaterials; scaffold; tissue engineering; material characterization; viscoelasticity; hydrogels; green chemistry; natural polymers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cellulose is the most abundant natural biopolymer on Earth. With an estimated annual production of ~1.5 × 1012 tons globally and the possibility of its extraction from waste sources, it is considered an almost inexhaustible source of raw material capable of supplying the growing demand for environmentally friendly and biocompatible products.

Within this framework, cellulose-based hydrogels usually combine hydrophilicity, biodegradability, non-toxicity, and biocompatibility together with low costs and massive availability, which make them extremely attractive in both academic and industrial fields. Potential application fields include biomedical engineering (e.g., tissue engineering and regenerative medicine, drug/cell delivery systems, 3D printing and bioprinting), progress in smart systems (e.g., sensors, actuators, soft robotics) and stimuli-responsive systems (e.g., pH- or thermo-responsive hydrogels), the agricultural sector (e.g., soil conditioning, nutrient carriers, water reservoirs), and water purification.

We are pleased to highlight the continued success of our Special Issue series on cellulose-based hydrogels. The previous editions have made significant contributions to the field, publishing 15, 16, and 11 papers, respectively. Please refer to the following Special Issues as examples:

This Special Issue aims to highlight recent progress in cellulose-based hydrogels, including gels prepared from natural cellulose and its derivatives, cellulose graft co-polymers, and composite gels based on cellulose. We encourage submissions covering key aspects of cellulose-based hydrogels, including design, characterization, as well as application-focused research.

As Guest Editors, we kindly invite you to contribute a research paper or a review on any topic related to this thread.

Dr. Lorenzo Bonetti
Dr. Laura Riva
Dr. Christian Demitri
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cellulose
  • nanocellulose
  • cellulose derivatives
  • cellulose-based composites
  • hydrogels
  • design
  • characterization
  • applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1877 KB  
Article
Cellulose Nanofibrils vs Nanocrystals: Rheology of Suspensions and Hydrogels
by Alexander S. Ospennikov, Alexander L. Kwiatkowski and Olga E. Philippova
Gels 2025, 11(11), 926; https://doi.org/10.3390/gels11110926 - 19 Nov 2025
Viewed by 561
Abstract
Plant-derived nanocellulose particles, such as cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs), are becoming increasingly popular for a wide range of applications. In particular, when they are employed as rheology modifiers and/or fillers, a choice between CNFs and CNCs is often not obvious. [...] Read more.
Plant-derived nanocellulose particles, such as cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs), are becoming increasingly popular for a wide range of applications. In particular, when they are employed as rheology modifiers and/or fillers, a choice between CNFs and CNCs is often not obvious. Here, we present the results of a comparative study on the rheological properties of suspensions and gels of carboxymethylated CNFs and CNCs with the same surface chemistry, surface density of charged groups, and thickness. We demonstrate that, at the same weight concentration, CNF suspensions have much higher viscosity and storage modulus, which is due to their longer length providing many entanglements. However, when comparing at the same nanoparticle concentration relative to C*, the situation is reversed: viscosity and storage modulus of CNCs appear to be much higher. This may be due in particular to the higher rigidity and intrinsic strength of highly crystalline CNCs. The gel points for CNF and CNC suspensions (without crosslinker) were compared for the first time. It was found that in the case of CNFs, the gel point occurs at a 3.5-fold lower concentration compared to that of CNCs. Hydrogels were also obtained by crosslinking negatively charged nanocellulose particles of both types by divalent calcium cations. For the first time, the thermodynamic parameters of the crosslinking of carboxymethylated CNFs by calcium ions were determined. Isothermal titration calorimetry data revealed that, for both CNFs and CNCs, crosslinking is endothermic and driven by increasing entropy, which is most likely due to the release of water molecules surrounding the interacting nanoparticles and Ca2+ ions. The addition of CaCl2 to suspensions of nanocellulose particles leads to an increase in the storage modulus; the increase being much more significant for CNCs. Physically crosslinked hydrogels of both CNFs and CNCs can be reversibly destroyed by increasing the shear rate and then quickly recover up to 85% of their original viscosity when the shear rate decreases. The recovery time for CFC networks is only 6 s, which is much shorter than that of CNC networks. This property is promising for various applications, where nanocellulose suspensions are subjected to high shear forces (e.g., mixing, stirring, extrusion, injection, coating) and then need to regain their original properties when at rest. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (4th Edition))
Show Figures

Figure 1

Back to TopTop