Recent Advances in Radio Astronomy

A special issue of Galaxies (ISSN 2075-4434).

Deadline for manuscript submissions: 15 February 2026 | Viewed by 3553

Special Issue Editor


E-Mail Website
Guest Editor
CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710, Australia
Interests: AGN; radio-astronomy; gamma-ray astronomy; VLBI

Special Issue Information

Dear Colleagues,

The last decade has been a golden era for radio astronomy, with new telescopes commissioned, existing facilities upgraded, and future developments planned. This has brought with it new capabilities and opened new areas of research in fields such as survey science, time domain studies, Very-Long-Baseline Interferometry, and spectral line studies. This Special Issue will focus on these new facilities, the science they are enabling, and the opportunities for multi-wavelength studies. Papers related to new instrumentation, new methods and techniques, and new lines of research are particularly welcomed.

References: Recent papers published in Galaxies that illustrate the journal scope and that are aligned with the themes of this Special Issue include the following:

“Key Science Goals for the Next-Generation Event Horizon Telescope” M.D. Johnson et al., 2023, Galaxies, 11, 61

“Overview of the Observing System and Initial Scientific Accomplishments of the East Asian VLBI Network (EAVN)” K. Akiyama et al., 2022 Galaxies, 10, 113

Dr. Phil Edwards
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Galaxies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • instrumentation
  • techniques
  • radio continuum
  • radio line
  • submillimetre
  • surveys
  • time domain

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 7428 KB  
Article
Reinforcement Learning-Driven Framework for High-Precision Target Tracking in Radio Astronomy
by Tanawit Sahavisit, Popphon Laon, Supavee Pourbunthidkul, Pattharin Wichittrakarn, Pattarapong Phasukkit and Nongluck Houngkamhang
Galaxies 2025, 13(6), 124; https://doi.org/10.3390/galaxies13060124 - 31 Oct 2025
Viewed by 168
Abstract
Radio astronomy requires precise target localization and tracking to ensure accurate observations. Conventional regulation methodologies, encompassing PID controllers, frequently encounter difficulties due to orientation inaccuracies precipitated by mechanical limitations, environmental fluctuations, and electromagnetic interferences. To tackle these obstacles, this investigation presents a reinforcement [...] Read more.
Radio astronomy requires precise target localization and tracking to ensure accurate observations. Conventional regulation methodologies, encompassing PID controllers, frequently encounter difficulties due to orientation inaccuracies precipitated by mechanical limitations, environmental fluctuations, and electromagnetic interferences. To tackle these obstacles, this investigation presents a reinforcement learning (RL)-oriented framework for high-accuracy monitoring in radio telescopes. The suggested system amalgamates a localization control module, a receiver, and an RL tracking agent that functions in scanning and tracking stages. The agent optimizes its policy by maximizing the signal-to-noise ratio (SNR), a critical factor in astronomical measurements. The framework employs a reconditioned 12-m radio telescope at King Mongkut’s Institute of Technology Ladkrabang (KMITL), originally constructed as a satellite earth station antenna for telecommunications and was subsequently refurbished and adapted for radio astronomy research. It incorporates dual-axis servo regulation and high-definition encoders. Real-time SNR data and streaming are supported by a HamGeek ZedBoard with an AD9361 software-defined radio (SDR). The RL agent leverages the Proximal Policy Optimization (PPO) algorithm with a self-attention actor–critic model, while hyperparameters are tuned via Optuna. Experimental results indicate strong performance, successfully maintaining stable tracking of randomly moving, non-patterned targets for over 4 continuous hours without any external tracking assistance, while achieving an SNR improvement of up to 23.5% compared with programmed TLE-based tracking during live satellite experiments with Thaicom-4. The simplicity of the framework, combined with its adaptability and ability to learn directly from environmental feedback, highlights its suitability for next-generation astronomical techniques in radio telescope surveys, radio line observations, and time-domain astronomy. These findings underscore RL’s potential to enhance telescope tracking accuracy and scalability while reducing control system complexity for dynamic astronomical applications. Full article
(This article belongs to the Special Issue Recent Advances in Radio Astronomy)
Show Figures

Figure 1

21 pages, 4883 KB  
Article
VERA’s 20 yr Evolution in Science and Technology
by Mareki Honma, Tomoya Hirota, Tomoaki Oyama and Akiharu Nakagawa
Galaxies 2025, 13(6), 120; https://doi.org/10.3390/galaxies13060120 - 27 Oct 2025
Viewed by 195
Abstract
We review the past 20 yr evolution of VERA (VLBI Exploration of Radio Astrometry) in both science and techinology. VERA is a VLBI array in Japan which consists of four 20 m-diameter telescopes, originally dedicated to phase-referencing VLBI astrometry. Its main observing bands [...] Read more.
We review the past 20 yr evolution of VERA (VLBI Exploration of Radio Astrometry) in both science and techinology. VERA is a VLBI array in Japan which consists of four 20 m-diameter telescopes, originally dedicated to phase-referencing VLBI astrometry. Its main observing bands are K (22 GHz) and Q (43 GHz) for conducting astrometry observations of H2O and SiO maser sources. In its 20 yr history, VERA has conducted astrometry observations of ∼100 maser sources, revealing the three-dimensional structure of the Milky Way Galaxy. Its long-term observations of Sgr A* resulted in the first parallax detection of the super-massive black hole at the Galaxy center. Observations of maser sources also revealed physical properties of star-forming regions and provided calibration of AGB stars’ distances and their Period–Luminosity relation. In parallel, several upgrades have been carried out in receivers as well as digital back-ends and correlator to extend the frequency bands and the data rate. Full article
(This article belongs to the Special Issue Recent Advances in Radio Astronomy)
Show Figures

Figure 1

14 pages, 247 KB  
Article
The Murchison Widefield Array Enters Adolescence: A Personal Review of the Early Years of Operations
by Steven J. Tingay
Galaxies 2025, 13(5), 107; https://doi.org/10.3390/galaxies13050107 - 11 Sep 2025
Viewed by 697
Abstract
The Murchison Widefield Array (MWA) is a low frequency radio interferometer designed and developed by an international consortium, operated on behalf of the consortium by Curtin University. The MWA is a Precursor for the low frequency Square Kilometre Array (SKA) and is located [...] Read more.
The Murchison Widefield Array (MWA) is a low frequency radio interferometer designed and developed by an international consortium, operated on behalf of the consortium by Curtin University. The MWA is a Precursor for the low frequency Square Kilometre Array (SKA) and is located at the SKA site in Western Australia, Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory. Commencing science operations in 2013 after an extended development period, the MWA has performed observations over a wide set of science objectives, has been upgraded multiple times, and has played a fundamental role in the development of the low frequency SKA. As MWA Program Manager from 2008 to 2011, as Director from 2011 until 2015, and then again from 2021 to the present, I describe some personal reflections on the MWA’s activities and successes in these different dimensions, as well as my view of some of the approaches that have enabled these successes. I offer some of the lessons I’ve perceived over the last 17+ years in the project. Full article
(This article belongs to the Special Issue Recent Advances in Radio Astronomy)
18 pages, 30275 KB  
Article
RAD@home Citizen Science Discovery of Two Spiral Galaxies Where the 30–220 kpc Radio Lobes Are Possibly Shaped by Ram Pressure Stripping
by Prakash Apoorva, Ananda Hota, Pratik Dabhade, P. K. Navaneeth, Dhruv Nayak and Arundhati Purohit
Galaxies 2025, 13(5), 98; https://doi.org/10.3390/galaxies13050098 - 22 Aug 2025
Cited by 1 | Viewed by 1177
Abstract
We report the RAD@home citizen science discovery of two rare spiral-host radio galaxies (NGC 3898 and WISEA J221656.57-132042434.1 or RAD-“Thumbs up” galaxy), both exhibiting asymmetric radio lobes extending over 30 to 220 kiloparsec scales. We present a multi-wavelength image analysis of these two [...] Read more.
We report the RAD@home citizen science discovery of two rare spiral-host radio galaxies (NGC 3898 and WISEA J221656.57-132042434.1 or RAD-“Thumbs up” galaxy), both exhibiting asymmetric radio lobes extending over 30 to 220 kiloparsec scales. We present a multi-wavelength image analysis of these two sources using radio, optical, and ultraviolet data. Both host galaxies are young, star-forming systems with asymmetric or distorted stellar disks. These disks show similarities to those in galaxies undergoing ram pressure stripping, and the radio morphologies resemble those of asymmetric or bent FR-II and wide-angle-tailed radio galaxies. We suggest that non-uniform gas density in the environment surrounding the ram pressure-stripped disks may contribute to the observed asymmetry in the size, shape, and brightness of bipolar radio lobes. Such environmental effects, when properly accounted for, could help explain many of the non-standard radio morphologies observed in Seyfert galaxies and in recently identified populations of galaxies with galaxy-scale radio jets, which are now being revealed through deep and sensitive radio surveys with uGMRT, MeerKAT, LOFAR, and, in the future, SKAO. These findings also underscore the potential of citizen science to complement professional research and data-driven approaches involving machine learning and artificial intelligence in the analysis of complex radio sources. Full article
(This article belongs to the Special Issue Recent Advances in Radio Astronomy)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 16328 KB  
Review
Radio Astronomy with NASA’s Deep Space Network
by T. Joseph W. Lazio and Stephen M. Lichten
Galaxies 2025, 13(6), 123; https://doi.org/10.3390/galaxies13060123 - 31 Oct 2025
Viewed by 188
Abstract
The Deep Space Network (DSN) is the spacecraft tracking and communication infrastructure for NASA’s deep space missions. At three sites, approximately equally separated in (terrestrial) longitude, there are multiple radio antennas outfitted with cryogenic microwave receiving systems both for receiving transmissions from deep [...] Read more.
The Deep Space Network (DSN) is the spacecraft tracking and communication infrastructure for NASA’s deep space missions. At three sites, approximately equally separated in (terrestrial) longitude, there are multiple radio antennas outfitted with cryogenic microwave receiving systems both for receiving transmissions from deep space spacecraft and for conducting radio astronomical observations, particularly in the L band (1350 MHz–1800 MHz), X band (8200 MHz–8600 MHz), and K band (18 GHz–27 GHz). In particular, the 70 m antennas at the Canberra and Madrid DSN Complexes are well-equipped to participate in international very long baseline interferometry (VLBI) observations. Over the past five years, there has been an effort to refurbish and modernize equipment such as receiving and signal transport systems for radio astronomical observations. We summarize current capabilities, on-going refurbishment activities, and possible future opportunities. Full article
(This article belongs to the Special Issue Recent Advances in Radio Astronomy)
Show Figures

Figure 1

Back to TopTop