Radio Astronomy with NASA’s Deep Space Network
Abstract
1. Introduction
2. Antennas
2.1. 70 m Subnetwork
2.2. 34 m Subnetwork
3. Receiving Systems
3.1. L Band (1628 MHz–1708 MHz)
3.2. S Band (2200 MHz–2300 MHz)
3.3. X Band (8200 MHz–8600 MHz)
3.4. Radio Astronomical K Band (17 GHz–27 GHz)
3.5. Radio Astronomical Q Band (38 GHz–50 GHz)
4. Backends
4.1. DSN Radio Astronomy Spectrometer-Canberra
4.2. Time-Domain Processors
4.2.1. DSN Pulsar Processor-Canberra
4.2.2. Open Loop Recorder
5. Proposal Submission and DSN Scheduling
- The prime responsibility of the DSN antennas is for spacecraft telemetry, tracking, and command (TT&C). While every effort will be made to accommodate projects that require time-critical observations or observations at specific epochs, such observations can be challenging to schedule given the TT&C needs of the various missions that depend upon the DSN.
- The DSN schedules time four to six months in advance. While every effort will be made to accommodate proposals submitted less than six months in advance, review and scheduling of projects will be facilitated by submission six months in advance.
- A basic requirement for all proposals to use DSN antennas for radio astronomy is that the proposal must specify how the proposed observations require some unique capability of the DSN.
6. Future Plans and Opportunities
6.1. K Band at Madrid 70 m Antenna (DSS-63)
6.2. L Band at Canberra 70 m Antenna (DSS-43)
- Introduction of an orthomode transducer (OMT), enabling both polarizations to be processed, whereas the legacy system produced only a single polarization;
- Use of WR-510 waveguide, which has a notional frequency range of 1450 MHz to 2200 MHz, rather than the legacy WR-430 waveguide (1720 MHz–2600 MHz); and
- Introduction of digitization within the antenna, immediately after amplification, rather than transport of the signal down the antenna and into the Canberra Signal Processing Center (SPC).
6.3. K Band at Canberra 70 m Antenna (DSS-43)
- Stage 1.
- In this first stage, each 10 GHz RF signal would be downconverted to a 2 GHz–12 GHz intermediate frequency (IF). The four IF signals would be transported over fiber to the SPC.
- Stage 2.
- For backward compatibility, the IF signals would be converted to 10 baseband signals, each 1 GHz wide. However, in principle, it also would be feasible to split each IF signal such that it fed the baseband converters as well as providing a 10 GHz-wide band for direct digitization.
6.4. C Band and Wide-Band Receivers
6.5. W Band (≈ 90 GHz)
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
| 1 | Within the EVN, DSN participation is denoted by “Robledo” or Ro, based on the name of the nearby town Robledo de Chavela. |
| 2 | Within the LBA, DSN participation is denoted by “Tidbinbilla” or “Tid” or Ti, based on the name of a nearby nature reserve. |
| 3 | The boundary between “deep space” and “near-Earth” is defined by the International Telecommunications Union as 2 million km. |
| 4 | https://deepspace.jpl.nasa.gov/about/commitments-office/science/ (accessed on 20 October 2025). |
| 5 | https://www.jpl.nasa.gov/missions/space-very-long-baseline-interferometry-space-vlbi/ (accessed on 20 October 2025). |
| 6 | https://www3.mpifr-bonn.mpg.de/div/vlbi/globalmm/ (accessed on 20 October 2025). |
References
- Cohen, M.H.; Cannon, W.; Purcell, G.H.; Shaffer, D.B.; Broderick, J.J.; Kellermann, K.I.; Jauncey, D.L. The Small-Scale Structure of Radio Galaxies and Quasi-Stellar Sources at 3.8 Centimeters. Astron. J. 1971, 170, 207. [Google Scholar] [CrossRef]
- Levy, G.S.; Linfield, R.P.; Ulvestad, J.S.; Edwards, C.D.; Jordan, J.F.; di Nardo, S.J.; Christensen, C.S.; Preston, R.A.; Skjerve, L.J.; Stavert, L.R.; et al. Very Long Baseline Interferometric Observations made with an Orbiting Radio Telescope. Science 1986, 234, 187–189. [Google Scholar] [CrossRef]
- Levy, G.S.; Linfield, R.P.; Edwards, C.D.; Ulvestad, J.S.; Jordan, J.F., Jr.; Dinardo, S.J.; Christensen, C.S.; Preston, R.A.; Skjerve, L.J.; Stavert, L.R.; et al. VLBI Using a Telescope in Earth Orbit. I. The Observations. Astron. J. 1989, 336, 1098. [Google Scholar] [CrossRef]
- Linfield, R.P.; Levy, G.S.; Ulvestad, J.S.; Edwards, C.D.; Dinardo, S.J.; Stavert, L.R.; Ottenhoff, C.H.; Whitney, A.R.; Cappallo, R.J.; Rogers, A.E.E.; et al. VLBI Using a Telescope in Earth Orbit. II. Brightness Temperatures Exceeding the Inverse Compton Limit. Astron. J. 1989, 336, 1105. [Google Scholar] [CrossRef]
- Velusamy, T.; Kuiper, T.B.H.; Langer, W.D. CCS Observations of the Protostellar Envelope of B335. Astrophys. J. 1995, 451, L75. [Google Scholar] [CrossRef]
- Kuiper, T.B.H.; Langer, W.D.; Velusamy, T. Evolutionary Status of the Pre-protostellar Core L1498. Astron. J. 1996, 468, 761. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Ramirez, L.; Rizzo, J.R.; Zijlstra, A.A.; García-Miró, C.; Morisset, C.; Gray, M.D. First detection of 3He+ in the planetary nebula IC 418. Mon. Not. R. Astron. Soc. 2016, 460, L35–L39. [Google Scholar] [CrossRef]
- Fey, A.L.; Gordon, D.; Jacobs, C.S.; Ma, C.; Gaume, R.A.; Arias, E.F.; Bianco, G.; Boboltz, D.A.; Böckmann, S.; Bolotin, S.; et al. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. Astrophys. J. 2015, 150, 58. [Google Scholar] [CrossRef]
- Charlot, P.; Jacobs, C.S.; Gordon, D.; Lambert, S.; de Witt, A.; Böhm, J.; Fey, A.L.; Heinkelmann, R.; Skurikhina, E.; Titov, O.; et al. The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron. & Astrophys. 2020, 644, A159. [Google Scholar] [CrossRef]
- Lazio, T.J.W. Radio Astronomy Users Guide; Technical Report; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2021. Available online: https://deepspace.jpl.nasa.gov/files/DSN_Radio_Astronomy_Users_Guide.pdf (accessed on 20 October 2025).
- Deep Space Network Telecommunications Link Design Handbook; Technical Report 810-005; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2024. Available online: http://deepspace.jpl.nasa.gov/dsndocs/810-005/ (accessed on 20 October 2025).
- Imbriale, W.A. Large Antennas of the Deep Space Network; Deep Space Communications and Navigation Series; Jet Propulsion Laboratory, California Institute of Technology; John Wiley & Sons: San Francisco, CA, USA, 2003; Volume 4, ISBN 978-0-471-44537-1. [Google Scholar]
- Dougherty, K.; Sarkissian, J. Dishing Up the Data: The Role of Australian Space Tracking and Radioastronomy Facilities in the Exploration of the Solar System. In Proceedings of the IAF Abstracts, 34th COSPAR Scientific Assembly, Houston, TX, USA, 10–19 October 2002; p. 291. [Google Scholar]
- Preston, R.A.; Wilcher, J.H.; Stelzried, C.T. The Venus Balloon Project. Telecommun. Data Acquis. Prog. Rep. 1985, 80, 195–201. [Google Scholar]
- Deep Space Network Telecommunications Link Design Handbook; 70-m Subnet Telecommunications Interfaces, Technical Report 810-005, 101, Rev. H; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2025. Available online: https://deepspace.jpl.nasa.gov/dsndocs/810-005/101/101H.pdf (accessed on 20 October 2025).
- Vilnrotter, V.; Fort, D. Demonstration and Evaluation of the Ka-Band Array Feed Compensation System on the 70-Meter Antenna at DSS 14. Telecommun. Mission. Oper. Prog. Rep. 1999, 139, 1–17. [Google Scholar]
- Deep Space Network Telecommunications Link Design Handbook; 34-m HEF Subnet Telecommunications Interfaces, Technical Report 810-005, 103, Rev. E; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2025. Available online: https://deepspace.jpl.nasa.gov/dsndocs/810-005/103/103E.pdf (accessed on 20 October 2025).
- Deep Space Network Telecommunications Link Design Handbook; 34-m BWG Antennas Telecommunications Interfaces, Technical Report 810-005, 104, Rev. O; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2022. Available online: https://deepspace.jpl.nasa.gov/dsndocs/810-005/104/104O.pdf (accessed on 20 October 2025).
- Tehrani, B.; Hoppe, D.; Milton, J.; Abramovici, A.; Allmaras, J.; Chung, S.; Klaib, A.; Mohageg, M.; Rogalin, R.; Whipp, K. The RF/optical hybrid antenna for deep space communications. In Free-Space Laser Communications XXXVII; Hemmati, H., Robinson, B.S., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2025; Volume 13355, p. 133550P. [Google Scholar] [CrossRef]
- Bansal, K.; Wharton, R.S.; Pearlman, A.B.; Majid, W.A.; Prince, T.A.; Younes, G.; Hu, C.P.; Enoto, T.; Kocz, J.; Horiuchi, S. Simultaneous radio and X-ray observations of the magnetar Swift J1818.0-1607. Mon. Not. R. Astron. Soc. 2023, 523, 2401–2408. [Google Scholar] [CrossRef]
- Potter, P.D. A New Horn Antenna with Suppressed Sidelobes and Equal Beamwidths; Technical Report JPL Technical Report 32-354; Jet Propulsion Laboratory: Pasadena, CA, USA, 1963. [Google Scholar]
- Hoppe, D.; Khayatian, B.; Lopez, B.; Torrez, T.; Long, E.; Sosnowski, J.; Franco, M.; Teitelbaum, L. Broadband Upgrade for the 1.668-GHz (L-Band) Radio Astronomy Feed System on the DSN 70-m Antennas. Interplanet. Netw. Prog. Rep. 2015, 42-202, 1–22. [Google Scholar]
- Hobbs, G.; Manchester, R.N.; Dunning, A.; Jameson, A.; Roberts, P.; George, D.; Green, J.A.; Tuthill, J.; Toomey, L.; Kaczmarek, J.F.; et al. An ultra-wide bandwidth (704 to 4 032 MHz) receiver for the Parkes radio telescope. Pub. Astron. Soc. Aust. 2020, 37, e012. [Google Scholar] [CrossRef]
- Kuiper, T.B.H.; Franco, M.; Smith, S.; Baines, G.; Greenhill, L.J.; Horiuchi, S.; Olin, T.; Price, D.C.; Shaff, D.; Teitelbaum, L.P.; et al. The 17-27 GHz Dual Horn Receiver on the NASA 70 m Canberra Antenna. J. Astron. Instrum. 2019, 8, 1950014. [Google Scholar] [CrossRef]
- Rizzo, J.R.; Pedreira, A.; Gutiérrez Bustos, M.; Sotuela, I.; Larrañaga, J.R.; Ojalvo, L.; Franco, M.; Cernicharo, J.; García-Miró, C.; Castro Cerón, J.M.; et al. The wideband backend at the MDSCC in Robledo. A new facility for radio astronomy at Q- and K-bands. Astron. Astrophys. 2012, 542, A63. [Google Scholar] [CrossRef]
- Tercero, F.; López-Pérez, J.A.; Gallego, J.D.; Beltrán, F.; García, O.; Patino-Esteban, M.; López-Fernández, I.; Gómez-Molina, G.; Diez, M.; García-Carreño, P.; et al. Yebes 40 m radio telescope and the broad band Nanocosmos receivers at 7 mm and 3 mm for line surveys. Astron. Astrophys. 2021, 645, A37. [Google Scholar] [CrossRef]
- Virkler, K.; Kocz, J.; Soriano, M.; Horiuchi, S.; Pineda, J.L.; McNichols, T. A Broadband Digital Spectrometer for the Deep Space Network. Astron. J. Suppl. Ser. 2020, 251, 1. [Google Scholar] [CrossRef]
- Garwood, R.W. SDFITS: A Standard for Storage and Interchange of Single Dish Data. In Astronomical Data Analysis Software and Systems IX; Manset, N., Veillet, C., Crabtree, D., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2000; Volume 216, p. 243. [Google Scholar]
- Kocz, J.; Majid, W.; White, L.; Snedeker, L.; Franco, M. Pulsar Timing at the Deep Space Network. J. Astron. Instrum. 2016, 5, 1641013. [Google Scholar] [CrossRef]
- Deep Space Network Telecommunications Link Design Handbook; Open-Loop Radio Science, Technical Report 810-005, 209, Rev. F; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2024. Available online: https://deepspace.jpl.nasa.gov/dsndocs/810-005/209/209F.pdf (accessed on 20 October 2025).
- Johnston, M. Scheduling NASA’s Deep Space Network in the Artemis Era. In Proceedings of the 18th International Conference on Space Operations, SpaceOps, Montreal, QC, Canada, 26–30 May 2025; p. 50. [Google Scholar]
- Johnston, M.; Mason, J.; Lucena, G.; Christman, P.; Wong, A.; Watson, D.; Peich, K. Automating the Request Process for the Deep Space Network. In Proceedings of the 18th International Conference on Space Operations, SpaceOps, Montreal, QC, Canada, 26–30 May 2025; p. 319. [Google Scholar]
- de Witt, A.; Jacobs, C.S.; Gordon, D.; Bietenholz, M.; Nickola, M.; Bertarini, A. The Celestial Reference Frame at K Band: Imaging. I. The First 28 Epochs. Astrophys. J. 2023, 165, 139. [Google Scholar] [CrossRef]
- Rochblatt, D.J.; Baines, G.; Vazquez, M.; Sotuela, I.; Snedeker, C.; LaBelle, R.; Schredder, J.; Ridgway, T. Calibration and performance measurements of the NASA Deep Space Network antennas upgrade for Ka-band (26-GHz). In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Deep Space Network Telecommunications Link Design Handbook; Wideband Very-Long Baseline Interferometry, Technical Report 810-005, 211, Rev. G; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2024. Available online: https://deepspace.jpl.nasa.gov/dsndocs/810-005/211/211G.pdf (accessed on 20 October 2025).
- Hirabayashi, H.; Hirosawa, H.; Kobayashi, H.; Murata, Y.; Edwards, P.G.; Fomalont, E.B.; Fujisawa, K.; Ichikawa, T.; Kii, T.; Lovell, J.E.J.; et al. Overview and Initial Results of the Very Long Baseline Interferometry Space Observatory Programme. Science 1998, 281, 1825. [Google Scholar] [CrossRef]
- Hirabayashi, H.; Hirosawa, H. The VSOP Mission: A General Introduction and Current Overview. Adv. Space Res. 2000, 26, 589–595. [Google Scholar] [CrossRef]
- Flygare, J.; Pantaleev, M.; Olvhammar, S. BRAND: Ultra-wideband feed development for the European VLBI network — A dielectrically loaded decade bandwidth quad-ridge flared horn. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Alef, W.; Tuccari, G.; Dornbusch, S.; Wunderlich, M.; Pantaleev, M.; Flygare, J.; Tercero, F.; Schoonderbeek, G.; Hargreaves, J.; de Wild, R.; et al. BRAND—The next generation receiver for VLBI. In Proceedings of the 14th European VLBI Network Symposium & Users Meeting (EVN 2018), Granada, Spain, 8–11 October 2018; p. 81. [Google Scholar] [CrossRef]
- Kooi, J.; Soriano, M.; Bowen, J.; Abdulla, Z.; Samoska, L.; Fung, A.; Manthena, R.; Hoppe, D.; Javadi, H.; Crawford, T.; et al. A Multioctave 8 GHz-40 GHz Receiver for Radio Astronomy. IEEE J. Microwaves 2023, 3, 570–586. [Google Scholar] [CrossRef]
- Shambayati, S. On the Use of W-Band for Deep-Space Communications. Interplanet. Netw. Prog. Rep. 2003, 42-154, 1–17. [Google Scholar]
- Biswas, A.; Srinivasan, M.; Andrews, K.; Velasco, A.; Alerstam, E.; Allmaras, J.; Wollman, E.; Meenehan, S.; Wright, M.; Rogalin, R. Overview of the deep space optical communications (DSOC) technology demonstration. In Free-Space Laser Communications XXXVII; Hemmati, H., Robinson, B.S., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2025; Volume 13355, p. 133550J. [Google Scholar] [CrossRef]
- Teitelbaum, L. Deep Space Station 13: Deep Space Network Research and Development 34-m Beam Waveguide Antenna. Ipn-Isd Technology and Science News, Jpl Open Repository, Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA. 2001. Available online: https://hdl.handle.net/2014/13206 (accessed on 20 October 2025).
- Johnson, M.D.; Akiyama, K.; Blackburn, L.; Bouman, K.L.; Broderick, A.E.; Cardoso, V.; Fender, R.P.; Fromm, C.M.; Galison, P.; Gómez, J.L.; et al. Key Science Goals for the Next-Generation Event Horizon Telescope. Galaxies 2023, 11, 61. [Google Scholar] [CrossRef]
- Issaoun, S.; Pesce, D.W.; Roelofs, F.; Chael, A.; Dodson, R.; Rioja, M.J.; Akiyama, K.; Aran, R.; Blackburn, L.; Doeleman, S.S.; et al. Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 2023, 11, 28. [Google Scholar] [CrossRef]
- Johnson, M.D.; Akiyama, K.; Baturin, R.; Bilyeu, B.; Blackburn, L.; Boroson, D.; Cárdenas-Avendaño, A.; Chael, A.; Chan, C.k.; Chang, D.; et al. The Black Hole Explorer: Motivation and vision. In Proceedings of the Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, Yokohama, Japan, 16–22 June 2024; Coyle, L.E., Matsuura, S., Perrin, M.D., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 13092, p. 130922D. [Google Scholar] [CrossRef]





| Name | Antennas |
|---|---|
| Canberra | DSS-43 (70 m) |
| Australia | DSS-34, DSS-35, DSS-36 (34 m) |
| Goldstone | DSS-14 (70 m) |
| USA | DSS-24, DSS-25, DSS-26, DSS-23, DSS-13 (34 m) |
| Madrid | DSS-63 (70 m) |
| Spain | DSS-53, DSS-54, DSS-55, DSS-56, DSS-65 (34 m) |
| Abbreviation: DSS = Deep Space Station | |
| DSS-13 is the DSN’s research and development (R&D) antenna. | |
| DSS-23 is currently under construction. | |
| Band | Center Frequency (GHz) | Frequency Range (GHz) | Antenna | Gain (K Jy−1) |
|---|---|---|---|---|
| L a,b | 1.668 | 1.628–1.708 | all | 1.18 |
| S | 2.295 | 2.2–2.3 | all | 1.12 |
| X c | 8.42 | 8.2–8.6 | all | 1.06 |
| K | 22 | 18–27 | DSS-43 (Canberra) DSS-63 (Madrid) | 0.56 0.36 |
| Band | Frequency Range (GHz) | Antenna | Gain (K Jy−1) |
|---|---|---|---|
| S | 2.2–2.3 | DSS-24, DSS-26 | 0.24 |
| DSS-34, DSS-36 | |||
| DSS-54, DSS-56 | |||
| DSS-65 | |||
| X a | 8.4–8.5 | DSS-24 | 0.25 |
| 8.2–8.6 | DSS-25, DSS-26 | ||
| DSS-34, DSS-35, DSS-36 | |||
| DSS-54, DSS-55, DSS-56 | |||
| DSS-65 | |||
| K | 25.5–27 | DSS-24, DSS-26 | 0.2 |
| DSS-34, DSS-36 | |||
| DSS-54, DSS-56 | |||
| Ka | 31.8–32.3 | DSS-25, DSS-26 | 0.2 |
| DSS-34, DSS-35, DSS-36 | |||
| DSS-53, DSS-54, DSS-55, DSS-56 |
| Observation | Recommended Backend |
|---|---|
| Low, Modest DM Searches | Pulsar Processor |
| High DM Searches | |
| Single-Pulse Studies, slow pulsars, FRBs | |
| Single-Pulse Studies, recycled and millisecond pulsars | Open Loop Recorder |
| Category | Summary |
|---|---|
| Ground-Based Radio Astronomy (GBRA) | Proposals submitted to JPL, technical evaluation at JPL |
| European VLBI Network & Global VLBI (EGS) | Proposals for DSN antennas as part of a VLBI array, typically submitted to the EVN |
| Host Country Radio Astronomy (HCRA) | Proposals submitted to respective host country (Australia and Spain) entities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazio, T.J.W.; Lichten, S.M. Radio Astronomy with NASA’s Deep Space Network. Galaxies 2025, 13, 123. https://doi.org/10.3390/galaxies13060123
Lazio TJW, Lichten SM. Radio Astronomy with NASA’s Deep Space Network. Galaxies. 2025; 13(6):123. https://doi.org/10.3390/galaxies13060123
Chicago/Turabian StyleLazio, T. Joseph W., and Stephen M. Lichten. 2025. "Radio Astronomy with NASA’s Deep Space Network" Galaxies 13, no. 6: 123. https://doi.org/10.3390/galaxies13060123
APA StyleLazio, T. J. W., & Lichten, S. M. (2025). Radio Astronomy with NASA’s Deep Space Network. Galaxies, 13(6), 123. https://doi.org/10.3390/galaxies13060123
