Air Pollution in Urban and Industrial Areas, 4th Edition

A special issue of Environments (ISSN 2076-3298).

Deadline for manuscript submissions: 20 June 2026 | Viewed by 3055

Special Issue Editors


E-Mail Website
Guest Editor
National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29,300, 00015 Monterotondo, Italy
Interests: air pollution; renewable energy; sustainability; environmental analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Atmospheric Pollution Research (CNR-IIA), National Research Council, Via Salaria 29,300, 00015 Monterotondo, Italy
Interests: air pollution; renewable energy; atmosphere
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As guest editor of Environments, I invite you to submit a paper to the Special Issue, "Air Pollution in Urban and Industrial Areas, 4th Edition". Environments publishes articles and communications in the interdisciplinary area of environmental technologies and methodologies, environmental protection, and pollution prevention. Detailed information on the journal can be found at https://www.mdpi.com/journal/environments.

Airborne particle concentration levels in cities are mostly related to anthropic urban activities/sources, such as industrial and residential sectors (heating) and vehicular traffic, i.e., sources characterized by combustion processes mainly producing high levels of particulate matter (PM), sub-micrometric, and ultrafine particles. Recent epidemiological studies have demonstrated that exposure to these concentrations can lead to respiratory and circulatory health problems. The International Agency for Research on Cancer (IARC) has classified particulate matter, a major component of air pollution, as carcinogenic to humans (Group 1).

Different measures should be taken regarding vehicle technologies, distribution optimization, and regulations. Furthermore, some policies and interventions, such as the promotion of sustainable urban mobility actions (for example, different urban transport strategies ranging from carpooling and expanded electric vehicle (EV) use to bike sharing), are needed to improve urban air quality and reduce the impact of such sources on the urban environment in terms of human exposure.

Air pollution in industrial areas is still a great health and social relevance topic. In the last few decades, conventional industrial processes (e.g., concrete, steel, plastic production, waste incineration, and thermoelectric energy generation) have undergone several changes to mitigate their environmental burden. Nevertheless, such processes are still a major source of air pollutants. On the other hand, novel industrial processes related to a circular economy (waste recycling, biomaterials production, renewable energy generation, etc.) are experiencing rapid growth. At the same time, their global impact on climate change mitigation is well known, but little information is available on their local impact on air quality.

In this framework, new research is needed to provide updated information on air pollutant emissions in urban and industrial areas. Interest can be focused on regulated or emerging pollutants, including volatile organic compounds, polyaromatic, halogenated, flame retardants, siloxanes, greenhouse gases, biologically active molecules, and nanoparticles.

This Special Issue is open to the subject area of urban and industrial air pollution. The keywords listed below outline some of the possible areas of interest.

The publications in previous volumes, which we believe may be of interest to you, can be found at the following links: https://www.mdpi.com/journal/environments/special_issues/Air_Urban; https://www.mdpi.com/journal/environments/special_issues/10R20O310Ohttps://www.mdpi.com/journal/environments/special_issues/934N9CCWEG.

Dr. Valerio Paolini
Dr. Francesco Petracchini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Environments is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • air pollution
  • NOx
  • particulate matter
  • residential heating
  • road traffic emissions
  • sustainable mobility
  • industrial emissions
  • pollutant dispersion
  • outdoor air quality
  • global health
  • population exposure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1112 KB  
Article
Selecting Non-VOC Emitting Cork Oaks—A Chance to Reduce Regional Air Pollution
by Michael Staudt, Meltem Erdogan and Coralie Rivet
Environments 2026, 13(2), 70; https://doi.org/10.3390/environments13020070 - 25 Jan 2026
Viewed by 475
Abstract
Cork oak is a strong emitter of volatiles, namely monoterpenes, which are important precursors of secondary air pollutants. Past studies have revealed distinct chemotypes in emitting as well as non-emitting individuals. Promoting non-emitters in afforestation and urban greening could improve air quality, but [...] Read more.
Cork oak is a strong emitter of volatiles, namely monoterpenes, which are important precursors of secondary air pollutants. Past studies have revealed distinct chemotypes in emitting as well as non-emitting individuals. Promoting non-emitters in afforestation and urban greening could improve air quality, but their rarity suggests that they are less resilient. To gain insight into this, we screened natural descendants from two non-emitting cork oaks for emissions and ecophysiological traits (CO2/H2O-gas exchange variables, budburst date, growth) and tested whether emitting and non-emitting descendants differ in their resistance to temperature and light fluctuations (sun-flecks). Both half-sib populations were composed of the same chemotypes in similar frequencies, comprising 32% of non-emitters and 50 and 18% of two emitting chemotypes with overall moderate emission rates. Based on this distribution, we identified an inheritance mode and compared it with the chemotype frequency of the mother population. In terms of ecophysiological traits, all chemotypes performed similarly, and non-emitters were as resistant to sun-flecks as emitters. We conclude that the chemotypes in emitters reflect a common polymorphism in monoterpene-emitting plants that is not related to adaptive selection. We also conclude that non-emission is heritable and that its phenotype should be evaluated in reforestation studies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas, 4th Edition)
Show Figures

Graphical abstract

25 pages, 4156 KB  
Article
Monitoring Industrial VOC Emissions and Geospatial Analysis
by Sebastian Barbu Barbes, Ana Cornelia Badea and Vlad Iordache
Environments 2026, 13(1), 41; https://doi.org/10.3390/environments13010041 - 8 Jan 2026
Viewed by 570
Abstract
Volatile organic compounds (VOCs) emissions from petroleum product storage pose not only a significant environmental concern but also a potential threat to occupational health. This study investigates geospatial analysis of VOCs on an industrial platform in Romania, utilizing a combination of portable field [...] Read more.
Volatile organic compounds (VOCs) emissions from petroleum product storage pose not only a significant environmental concern but also a potential threat to occupational health. This study investigates geospatial analysis of VOCs on an industrial platform in Romania, utilizing a combination of portable field detectors and geostatistical modeling techniques. For more than 10 months, we conducted measurements at 41 georeferenced sampling points across three operational zones, using FID/PID instruments calibrated and validated in accordance with national standards. To evaluate dispersion conditions, meteorological data were simultaneously collected. VOC concentrations were measured under varying meteorological scenarios and analyzed using the Empirical Bayesian Kriging (EBK) method in ArcGIS Pro 3.1.0. Maximum concentrations reached up to 229.46 mg/m3 in central tank areas, with some point samples exceeding this level. Peripheral zones generally showed values below 65 mg/m3, although concentrations above 100 mg/m3 were still observed at 10% of the monitoring sites. The results indicate apparent spatial clustering of elevated VOC levels, particularly under low wind speed and high humidity. Our study highlights the relevance of continuous monitoring and site-specific mitigation strategies in high-risk industrial settings in Romania. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas, 4th Edition)
Show Figures

Figure 1

29 pages, 3257 KB  
Article
Modeling Air Pollution from Urban Transport and Strategies for Transitioning to Eco-Friendly Mobility in Urban Environments
by Sayagul Zhaparova, Monika Kulisz, Nurzhan Kospanov, Anar Ibrayeva, Zulfiya Bayazitova and Aigul Kurmanbayeva
Environments 2025, 12(11), 411; https://doi.org/10.3390/environments12110411 - 1 Nov 2025
Cited by 1 | Viewed by 1594
Abstract
Urban air pollution caused by vehicular emissions remains one of the most pressing environmental challenges, negatively affecting both public health and climate processes. In Kokshetau, Kazakhstan, where electric vehicle (EV) adoption accounts for only 0.019% of the total fleet and charging infrastructure is [...] Read more.
Urban air pollution caused by vehicular emissions remains one of the most pressing environmental challenges, negatively affecting both public health and climate processes. In Kokshetau, Kazakhstan, where electric vehicle (EV) adoption accounts for only 0.019% of the total fleet and charging infrastructure is nearly absent, reducing transport-related emissions requires short-term and cost-effective solutions. This study proposes an integrated approach combining urban ecology principles with computational modeling to optimize traffic signal control for emission reduction. An artificial neural network (ANN) was trained using intersection-specific traffic data to predict emissions of carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM2.5). The ANN was incorporated into a nonlinear optimization framework to determine traffic signal timings that minimize total emissions without increasing traffic delays. The results demonstrate reductions in emissions of CO by 12.4%, NOx by 9.8%, SO2 by 7.6%, and PM2.5 by 10.3% at major congestion hotspots. These findings highlight the potential of the proposed framework to improve urban air quality, reduce ecological risks, and support sustainable transport planning. The method is scalable and adaptable to other cities with similar urban and environmental characteristics, facilitating the transition toward eco-friendly mobility and integrating data-driven traffic management into broader climate and public health policies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas, 4th Edition)
Show Figures

Figure 1

Back to TopTop