Measures of Information
A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Information Theory, Probability and Statistics".
Deadline for manuscript submissions: closed (14 May 2021) | Viewed by 25655
Special Issue Editor
Interests: stochastic orders; reliability theory; measures of discrimination (in particular entropy, extropies, inaccuracy, Kullback-Leibler); coherent systems; inference
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear colleagues,
How important is uncertainty in the life of a human being? Certainly an existence in which everything is deterministic is not worth living.
In 1948, Claude Shannon developed the general concept of entropy, a “measure of uncertainty”, a fundamental cornerstone of information theory, coming out from the idea of quantifying how much information there is in a message. In his paper “A Mathematical Theory of Communication”, he set out to mathematically quantify the statistical nature of “lost information” in phone-line signals, while working at Bell Telephone Laboratories.
Entropy in information theory is directly analogous to entropy in statistical thermodynamics.
In information theory, the entropy of a random variable is the average level of “information”, “uncertainty” or “surprise”, inherent in the variable’s possible outcomes.
The entropy was originally a part of his theory of communication, in which a data communication system is composed of three elements: a source of data, a communication channel, and a receiver. In Shannon’s theory, the “fundamental problem of communication” is for the receiver to be able to identify what data were generated by the source, based on the signal it receives through the channel. Thus, the basic idea is that the “informational value” of a communicated message depends on the degree to which the content of the message is surprising.
Entropy has relevance to other areas of mathematics. The definition comes from a set of axioms establishing that entropy should be a measure of how “surprising” the average outcome of a variable is. For a continuous random variable, differential entropy is analogous to entropy.
If an event is very probable, it is uninteresting when that event happens as expected; hence, transmission of such a message carries very little new information. However, if an event is unlikely to occur, it is much more informative to learn if the event happened or will happen.
In the last decades, several new measures of information and of discrimination have been defined and studied, and it is clear that many other ones (with applications in different fields) will be introduced. This Special Volume has the aim of enriching notions related to measures of discrimination.
Prof. Dr. Maria Longobardi
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.
Related Special Issues
- Measures of Information II in Entropy (11 articles)
- Measures of Information III in Entropy (5 articles)