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Abstract: In this manuscript, we analyze a bivariate vector auto-regressive (VAR) model in order to
draw the design principle of a timeseries with a controlled statistical inter-relationship. We show how
to generate bivariate timeseries with given covariance and Granger causality (or, equivalently, transfer
entropy), and show the trade-off relationship between these two types of statistical interaction. In
principle, covariance and Granger causality are independently controllable, but the feasible ranges of
their values which allow the VAR to be proper and have a stationary distribution are constrained by
each other. Thus, our analysis identifies the essential tri-lemma structure among the stability and
properness of VAR, the controllability of covariance, and that of Granger causality.

Keywords: Granger causality; transfer entropy; vector auto-regressive model; Lyapunov equation

1. Introduction
1.1. Background and Motivation

In the field of cognitive psychology, the human perception of the life-likeness (called
animacy perception) of one or multiple moving geometric patterns has been studied for
decades [1–5]. There are multiple findings on the effect of “synchrony” or “temporal contin-
gency” between multiple moving points on animacy perception. Findings from one line of
research [2] have suggested that a higher degree of “temporal contingency” of the moving
objects is related to a higher likelihood of animacy perception. Findings from the other line
of research [6] have suggested that the highest “temporal contingency”, presented in the
form of perfect synchronization, would decrease the likelihood of animacy perception.

These two lines of research have together suggested the existence of multiple types of
“temporal contingency”. Nevertheless, this past research does not appear to clarify these
types. Further, confusion surrounding these two distinct types of effects have led to two
lines of apparently conflicting effects of “temporal contingency”.

With this potential conflict in the literature on animacy perception in mind, we explore
a theoretical framework which can generate timeseries of multiple random variables with
multiple distinct types of statistical dependency. One such system, which is sufficiently
simple and readily manipulable, is vector auto-regression (VAR). Vector auto-regression is
a random process for generating multivariate timeseries for a given set of parameters. In
this manuscript, we specifically consider only bivariate VAR, which is a minimal system
with interaction between two moving points.

1.2. Vector Auto-Regressive Model, Granger Causality, and Transfer Entropy

Importantly, bivariate VAR, a series of paired random variables (xt, yt) for t = 0, 1, . . .,
has two types of statistical dependency—that is, the correlation and Granger causality of a
timeseries [7], which has been identified as transfer entropy [8] of the timeseries generated
by a Gaussian process by [9]. The correlation between univariate series x and y is a
statistical dependency between xt and yt in the limit t→ ∞ (if it exists), while a Granger
causality from y to x is that between xt and yt−1 given xt−1 in the limit t→ ∞ (if it exists).
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Conceptually, correlation captures a type of similarity between two timeseries, whereas
Granger causality captures the “reactiveness” of one timeseries to another.

Thus, given these differences in theory, our goal is to propose a theoretical method
to generate a bivariate random timeseries with a desired correlation and two types. The
Granger causality of VAR has also been considered in other fields. In econometrics, the field
in which it was originally proposed [7], Granger causality has been used as a measure of
interaction between a pair of economic timeseries [10–12]. It has also been used in general
behavioral sciences [13,14], particularly in computational neuroscience [15–18]. Such an
in-principle data generation technique would be vital to the testing of any hypothesis
on the empirical nature of timeseries (e.g., animacy perception) in the empirical sciences
using VAR and Granger causality, as mentioned above. To our knowledge, however, there
has been no mathematical analysis of the theoretical limitation of such a data generation
technique for a given statistics.

Thus, we first need to explore the mathematical relationship among the parameters in
a VAR with the correlation and Granger causality in a timeseries generated from it. In this
paper, we therefore explore a theoretical structure of bivariate VAR from the designer’s
perspective, and analyze a mathematical limit to the extent which we can simultaneously
control correlation and Granger causality of a bivariate timeseries.

This paper is written with the following structure. In Section 2, the VAR model is
defined, from which a set of basic statistical properties of the VAR model are derived, such
as Granger causality (Section 3) with a set of parameters. In Section 4, the existence of the
stationary distribution of the VAR is analyzed. This is a foundation which sets the limit of
a controllable set of parameters. In Section 5, we give a method to derive the parameters
of VAR for a given set of statistics in bivariate timeseries. In Section 6, the mathematical
analysis provided in this paper is summarized and a remark on the design principle of
bivariate timeseries generated by VAR is added.

2. Vector Auto-Regression (VAR)

In theory, Granger causality (GC) is the transfer entropy of random variables in a
bivariate vector auto-regression (VAR) model up to a constant factor of 2, if the VAR model
has a stationary distribution [9]. Thus, it is straightforward to start with the bivariate
VAR and derive its transfer entropy. In this way, we can derive a rich mathematical
relationship between GC and the properties of VAR, rather than just a statistics of the
bivariate timeseries.

Definition 1. For some real vector µ ∈ R2 and some positive-definite matrix Σ ∈ R2×2, suppose
the random variable εt for every integer t = 0, 1, . . . is drawn from the bivariate normal distribution

N(εt|µ, Σ) with mean µ and variance Σ. Define the initial vector by v0 =

(
x0
y0

)
, and for t ≥ 0

and a given coefficient matrix with real entries A :=
(

a0,0 a0,1
a1,0 a1,1

)
∈ R2×2, define the random

variable vt by
vt+1 := Avt + εt. (1)

Then, bivariate vector auto-regression is defined by the semi-infinite series of random variables
V = (v0, v1, v2, . . .).

In general, one can generate a timeseries v0, v1, . . . by fixing a set of the VAR param-
eters, the coefficient matrix A, and the base covariance matrix Σ, where the base mean
vector µ is omitted as its effect is lost in the limit t→ ∞ when the VAR is stationary. The
stationary correlation (covariance) Σ̂ and Granger causality G0 and G1 defined later are
the statistics of the timeseries generated by a VAR model (Figure 1). In what follows, we
first explore the forward relationship of how the statistics Σ̂ and G0, G1 are given by the
VAR parameters (A, Σ). We then consider the backward relationship in which the VAR
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parameters (A, Σ) suffice to generate a timeseries with given desired timeseries statistics
(G0, G1, Σ̂).

Figure 1. Schematic diagram of the organization of this paper.

2.1. Marginal Distribution of the VAR at Each Step

Lemma 1 (Marginal distribution of the VAR random variables at each step). The VAR
model with the initial vector v0 ∈ R2 and the coefficient matrix A ∈ R2×2 has the bivariate
normal distribution

N(vt|µt, Σt)

as its marginal distribution of the random variable vt at each step t = 0, 1, . . ., where

µt := Atv0, Σt =
t

∑
s=0

AsΣ(As)>.

Proof. By Definition 1, Lemma 1 holds for t = 0. For t + 1 > 0, we prove Lemma 1 by
assuming that it holds up to t ≥ 0. By this assumption held for t, we have the distribution
of vt ∈ R2 as the bivariate normal distribution

N(vt|µt, Σt) = (2π)−1|Σt|−
1
2 e−

1
2 (vt−µt)

>Σ−1
t (vt−µt)

with its mean µt and its covariance matrix Σt. Then, the random variable Avt is distributed
by the normal distribution

N(Avt|Aµt, AΣt A>) = (2π)−1|AΣt A>|−
1
2 (2)

× e−
1
2 (A(vt−µt))

>(AΣt A>)−1(A(vt−µt))

with its mean Aµt and the covariance matrix AΣt A>. The random variable εt is distributed
by the following normal distribution:

N(εt|0, Σ) = (2π)−1|Σ|−
1
2 e−

1
2 ε>t Σ−1εt .

Thus, by VAR, Equation (1), we have the random variable

vt+1 := Avt + εt
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which has a distribution calculated by the following integral:

P(vt+1) =
∫

εt∈R2
N(vt+1 − εt|Aµt, AΣt A>)N(εt|0, Σ)dεt.

Calculating this, we have

P(vt+1) = N
(

vt+1|Aµt, AΣt A> + Σ
)

. (3)

Thus defining by µt+1 := Aµt and Σt+1 = AΣt A> + Σ, Lemma 1 holds for t + 1. By
expanding this, we have the Lemma 1 for any integer t ≥ 0.

2.2. Stability of VAR: Lyapunov Equation

By Lemma 1, the mean and covariance matrix of the random variable at the tth step are

µt = Atv0 and Σt =
t

∑
s=0

AsΣ(As)>.

From this, we have the stationary distribution

lim
t→∞

N(vt|µt, Σt),

if and only if the absolute values of all the eigenvalues λ0, λ1 ∈ C of the coefficient matrix
A are less than 1. If there is such a stationary distribution, we call the VAR stable, and its
stationary distribution is the bivariate normal distribution

N(v̂|02, Σ̂),

where the stationary mean vector v̂ ∈ R2 and stationary covariance matrix Σ̂ ∈ R2×2 are
defined as follows. If the VAR is stable, we have the following Lyapunov equation of the
stationary covariance matrix Σ̂ ∈ R2×2:

Σ̂ = Σ + AΣ̂A>. (4)

The Lyapunov equation is solved analytically by

vec
(
Σ̂
)
= (I4 − A⊗ A)−1vec(Σ), (5)

where Id ∈ Rd×d is the dth order identity matrix, ⊗ denotes the Kronecker product, and
vec(X) for any matrix X = (xi,j)i=1,...,n,j=1,...,m is the vectorization operator vec() : Rn×m →
Rnm×1 defined by

vec(X) := (x1,1, x2,1, . . . , xn,1, . . . , x1,m, x2,m, . . . , xn,m)
>.

The Lyapunov Equation (4) has the solution for Σ̂ if the VAR is stable, but not vice
versa. This is shown by Lemma 4.

3. Transfer Entropy and Granger Causality

In [9], the transfer entropy of an appropriate triplet of variables in the VAR model is
shown to be equivalent to Granger causality up to the constant factor 2. Following this
guide, we define this quantity as the Granger causality of the VAR model, below.

Although this relationship has been known in a more general form [9], we re-derive
it for bivariate VAR in order to later analyze the structure of VAR and GCs in depth—for
example, its upper and lower bounds (Lemma 3), stability (Section 4), and design principle
(Section 5).
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Definition 2. If VAR with its random variables vt = (xt, yt)
> ∈ R2 for t = 0, 1, . . . is stable,

transfer entropy from y to x is defined by

Ty→x := lim
t→∞

(H(xt+1|xt)− H(xt+1|xt, yt)),

and the transfer entropy from x to y is defined by

Tx→y := lim
t→∞

(H(yt+1|yt)− H(yt+1|yt, xt)),

where the differential entropy of random variable x with its probability density function P is

H(x) := −
∫

x∈Ω
P(x) log P(x)dx,

and the conditional entropy is

H(x|y) := H(x, y)− H(y).

In particular, we call two times of transfer entropy Granger causality denoted by

G0 = 2Ty→x and G1 = 2Tx→y. (6)

Specifically, GCs are specifically written by the terms of the VAR parameters in the
following lemma.

Lemma 2 (Granger causality). If a stable VAR has its covariance matrix, coefficient matrix, and
stationary matrix

Σ =

(
σ0,0 σ0,1
σ1,0 σ1,1

)
, A =

(
a0,0 a0,1
a1,0 a1,1

)
, Σ̂ =

(
σ̂0,0 σ̂0,1
σ̂1,0 σ̂1,1

)
,

each Granger causality of this VAR for i = 0, 1 is

Gi = log

(
1 +

a2
i,1−idet

(
Σ̂
)

σ̂i,iσi,i

)
. (7)

Proof. In general, the differential entropy of multivariate normal distribution N(v|µ, Σ) is

H(v) =
1
2

log |2πeΣ|,

where e ≈ 2.71 is Napier’s constant. For the joint probability distribution of vt = (xt, yt)>

P(vt+1|vt) = N(vt+1|Avt, Σ),

the two marginal probability distributions of xt, yt are

P(xt+1|vt) = N(xt+1|(1, 0)Avt, σ0,0) and P(yt+1|vt) = N(yt+1|(0, 1)Avt, σ1,1).

Thus, the conditional entropy of xt+1 and yt+1 given vt = (xt, yt)> are

H(xt+1|xt, yt) =
1
2

log |2πeσ0,0| and H(yt+1|xt, yt) =
1
2

log |2πeσ1,1|.

With the conditional probability distribution and marginal probability distribution

P(vt+1|vt) = N(vt+1|Avt, Σ) and P(vt) = N(vt|Atv0, Σt),
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the joint probability distribution of vt and vt+1 is their product

P(vt+1, vt) = N(vt+1|Avt, Σ)N(vt|Atv0, Σt).

Specifically, this quad-variate normal distribution is

P(vt+1, vt) = e−
1
2 (vt+1−Avt)

>Σ−1(vt+1−Avt)− 1
2 (vt−Atv0)

>Σ−1
t (vt−Atv0)(2π)−2|Σ|−

1
2 |Σt|−

1
2 .

Applying the identities

vt+1 − Avt = vt+1 − At+1v0 − A(vt − Atv0),

Σ′t :=
(

Σ + AΣt A> AΣt
Σt A> Σt

)
=

(
Σ−1 −Σ−1 A

−A>Σ−1 Σ−1
t + AΣ−1 A>

)−1

,

and |Σ||Σt| = |Σ′t| to P(vt+1, vt), we have

P(vt+1, vt) = N(v′t|µ′t, Σ′t),

where

v′t :=
(

vt+1
vt

)
, µ′t :=

(
At+1v0

Atv0

)
, Σ′t :=

(
Σ + AΣt A> AΣt

Σt A> Σt

)
.

From this joint probability distribution P(vt+1, vt), we drive the marginal distributions

P(xt+1, xt) = N(xt+1, xt|µt,0, Σt,0), P(yt+1, yt) = N(yt+1, yt|µt,1, Σt,1),

where for i = 0, 1 the mean vectors and covariance matrices are defined as follows:

µt,i :=
(

e>i At+1v0
e>i Atv0

)
= (I2 ⊗ ei)µ

′
t,

Σt,i :=
(

e>i (Σ + AΣt A>)ei e>i AΣtei
e>i Σt A>ei e>i Σtei

)
= (I2 ⊗ ei)

>Σ′t(I2 ⊗ ei),

with the unit vectors e0 := (1, 0)>, e1 := (0, 1)>.
Thus, we have the joint entropy of xt and xt+1

H(xt+1, xt) =
1
2

log |2πeΣt,0| (8)

=
1
2

log(2πe)2|e>0 (Σ + AΣt A>)e0e>0 Σte0 − (e>0 AΣte0)
2|, (9)

and the marginal distribution of xt

H(xt) =
1
2

log 2πe|e>0 Σte0|. (10)

Using these, we have the conditional entropy

H(xt+1|xt) =
1
2

log 2π
e>0 (Σ + AΣt A>)e0e>0 Σte0 − (e>0 AΣte0)

2

|e>0 Σte0|
. (11)

By the stability of VAR, the Lyapunov Equation (4) holds, and this conditional entropy in
the limit t→ ∞ is

lim
t→∞

H(xt+1|xt) =
1
2

log 2π
(e>0 Σ̂e0)

2 − (e>0 AΣ̂e0)
2

|e>0 Σ̂e0|
. (12)
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Applying Definition 2 and denoting by entries in the stationary covariance matrix Σ̂ =(
σ̂0,0 σ̂0,1
σ̂1,0 σ̂1,1

)
, we have

G0 = 2Ty→x = log
(σ̂0,0)

2 − (a0,0σ̂0,0 + a0,1σ̂1,0)
2

σ̂0,0σ0,0
. (13)

Similarly, we have

G1 = 2Tx→y = log
(σ̂1,1)

2 − (a1,0σ̂0,1 + a1,1σ̂1,1)
2

σ̂1,1σ1,1
. (14)

Let us define for i = 0, 1

δi := (σ̂i,i)
2 − (ai,iσ̂i,i + ai,1−iσ̂1−i,i)

2 and δ′i := σ̂i,iσi,i. (15)

By the Lyapunov equation, σi,i = σ̂i,i − e>i AΣ̂A>ei. Applying this to δ′i , we have

δi = σ̂2
i,i − e>i A

(
σ̂2

i,i σ̂i,iσ̂1−i,i
σ̂i,iσ̂1−i,i σ̂2

1−i,i

)
A>ei, (16)

δ′i = σ̂2
i,i − e>i A

(
σ̂i,iσ̂0,0 σ̂i,iσ̂0,1
σ̂i,iσ̂1,0 σ̂i,iσ̂1,1

)
A>ei. (17)

As δi − δ′i = a2
i,1−idet

(
Σ̂
)

and G0 = log
(

1 + δi−δ′i
δ′i

)
, we have

Gi = log

(
1 +

a2
i,1−idet

(
Σ̂
)

σ̂i,iσi,i

)
.

The Granger causality has its lower and upper bounds in theory. Although these
bounds may be further narrowed by considering the stability of the VAR, what follows
below are the theoretical bounds regardless of the stability of the VAR.

Lemma 3 (The upper and lower bound for Granger causality). For each i = 0, 1, Granger
causality Gi has the following bounds:

0 ≤ Gi ≤ log γi, (18)

where γi := σ̂i,i
σi,i
≥ 1 due to the Lyapunov Equation (4). The lower bound Gi = 0 is given only if

a2
i,1−idet

(
Σ̂
)
= 0. (19)

The upper bound Gi = log γi is given only if

ai,iσ̂i,i + ai,1−iσ̂1−i,i = 0. (20)

Proof. As the stationary covariance matrix is (semi-)positive definite, det
(
Σ̂
)
≥ 0. Thus,

the lower bound of Granger causality is Gi ≥ log(1) = 0 and this bound is only reacheable
when a2

i,1−idet
(
Σ̂
)
= 0.

Modifying (13) and (14), for i = 0, 1 we have

(ai,iσ̂i,i + ai,1−iσ̂1−i,i)
2 = σ̂i,i

(
σ̂i,i − σi,ieGi

)
. (21)
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As (ai,iσ̂i,i + ai,1−iσ̂1−i,i)
2 ≥ 0 and σ̂i,i > 0,

Gi ≤ log γi.

This upper bound holds only if ai,iσ̂i,i + ai,1−iσ̂1−i,i = 0.

The upper bound Lemma 3 can also be obtained by the following information-
theoretic identity:

lim
t→∞

I(xt−1; xt) + I(xt; xt−1|xt−1) = lim
t→∞

I(xt; xt−1, xt−1),

where limt→∞ I(xt; xt−1|xt−1) = 1
2 G0 is the transfer entropy, limt→∞ I(xt; xt−1, xt−1) =

1
2 log σ̂0,0

σ0,0
, and

lim
t→∞

I(xt−1; xt) =
1
2

log
σ̂2

0,0∣∣∣∣ Σ̂ Σ̂A>

AΣ̂ Σ̂

∣∣∣∣ =
1
2
(log γ0 − G0).

4. Stability and Constraints of VAR

In this study, we primarily consider the class of stable VAR models with a proper set
of parameters. In this class, the statistical nature of any VAR is characterized by the base
covariance matrix Σ ∈ R2×2, coefficient matrix A ∈ R2×2, and stationary covariance matrix
Σ̂ ∈ R2×2. Let us denote the set of (strictly) positive definite matrices by

R2×2
+ :=

{
M ∈ R2×2

∣∣∣det(M) > 0 and tr(M) > 0
}

,

and the set of coefficient matrices of stable VAR models

R2×2
∗ :=

{
M ∈ R2×2

∣∣∣−1 + |tr(M)| < det(M) < 1
}

.

We will briefly show that the stable set R2×2
∗ includes all and only coefficient matrices of

stable bivariate VAR models.
With this notation of the set of matrices, the two conditions that any proper VAR

model needs to satisfy are as follows.

Stability Any stable VAR model has both of the eigenvalues λ0, λ1 of its coefficient matrix
A meeting |λ0|, |λ1| < 1.

Properness To have a proper (non-degenerated) bivariate normal distribution in a VAR
model, its base covariance matrix Σ and stationary covariance matrix Σ̂ need to satisfy
Σ, Σ̂ ∈ R2×2

+ . The set of positive-definite matrices is equivalently written with the
entries of the following matrix:

R2×2
+ =

{
C ∈ R2×2 | C0,0 > 0, C1,1 > 0, and C0,0C1,1 − C0,1C1,0 > 0

}
. (22)

4.1. Stability of VAR

As stated previously in Section 2.2, the stability of VAR is primarily characterized
by the eigenvalues of the coefficient matrix A. However, this condition is equivalent to
A ∈ R2×2

∗ , as shown by the following lemma.
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Lemma 4. A given bivariate VAR model with its coefficient matrix A ∈ R2×2 is stable if and
only if

|tr(A)| − 1 < det(A) < 1. (23)

Proof. Let λ be an eigenvalue of the coefficient matrix A. Such an eigenvalue then satisfies

f (λ) = |A− λI2| = λ2 − tr(A)λ + det(A) = 0. (24)

If a VAR is stable, this eigenvalue needs to satisfy |λ| < 1. As (24) is rewritten by

f (λ) =
(

λ− 1
2

tr(A)

)2
− 1

4

(
tr(A)2 − 4det(A)

)
, (25)

we analyze this condition on (24) for the following two cases with λ being real or non-real:

1. If λ is real, this stability condition is equivalent to

tr(A)2 ≤ 4det(A), f (1) > 0, f (−1) > 0, |tr(A)| < 2. (26)

2. If λ is not real, this stability condition is equivalent with

tr(A)2 < 4det(A), |λ|2 < 1. (27)

If λ of (24) is non-real (Case 2), λ (and its conjugate) is

λ =
1
2

tr(A)± j
2

√
|tr(A)2 − 4det(A)|, (28)

with the imaginary unit denoted by j.
With the inequality (27), the stability condition in this case is(

tr(A)

2

)2
< |λ|2 = det(A) < 1. (29)

If λ of (24) is real, tr(A)2 − 4det(A) ≥ 0 and

f (1) = 1− tr(A) + det(A) > 0 (30)

f (−1) = 1 + tr(A) + det(A) > 0 (31)

|tr(A)| < 2. (32)

Combining (30) and (31), we have |tr(A)| − 1 < det(A). This inequality with (26),

C0 < det(A) ≤
(

tr(A)

2

)2
< C1, (33)

where C0 := |tr(A)| − 1 and C1 := min
(

1,
(

1+det(A)
2

)2
)

. Find for an arbitrary A ∈ R2×2

we have the following two inequalities:

|tr(A)| − 1 ≤
(

1
2

tr(A)

)2
, (34)

and

det(A) ≤
(

1 + det(A)

2

)2
. (35)
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The inequality (34) holds equality for and only for tr(A) = 2, and the inequality (34) holds
equality for and only for det(A) = 1. As both of these equality conditions do not hold
under (29), (29) is equivalent to

C0 <

(
tr(A)

2

)2
< det(A) < C1. (36)

Integrating the two inequalities (33) for real λ and (36) for non-real λ, the VAR with the
coefficient matrix A is stable if

C0 < det(A) < C1 (37)

and

C0 <

(
tr(A)

2

)2
< C1. (38)

As the inequality (37) implies 0 < 1+det(A)
2 < 1 and tr(A) < 2, (38) is equivalent to(

tr(A)

2

)2
<

(
1 + det(A)

2

)2
. (39)

As the upper bound for det(A) in (37) can be implied by det(A) < 1, it is equivalent to

|tr(A)| − 1 < det(A) < 1. (40)

Thus, the pair of inequalities (37) and (38) for A is equivalent to the single inequality (40)
for A.

4.2. Stability and Existence of the Solution for the Lyapunov Equation

Intuitively, it would be reasonable if there was a stationary covariance matrix Σ̂ ∈ R2×2
+

satisfying the Lyapunov Equation (4), if the coefficient matrix is A ∈ R2×2
∗ . However, this

is not trivial, as the opposite may not be always true: the existence of Σ̂ ∈ R2×2
+ does not

imply A ∈ R2×2
∗ . This relationship between A and Σ̂ is stated by the following Theorem 1.

Theorem 1. There is a stationary covariance matrix Σ̂ ∈ R2×2
+ satisfying the Lyapunov Equation (4),

if the coefficient matrix is A ∈ R2×2
∗ . However, the existence of Σ̂ ∈ R2×2

+ does not imply
A ∈ R2×2

∗ .

Proof. Find the identity

det(I4 − A⊗ A) = det
(
(I2 − a0,0 A)(I2 − a1,1 A)− a0,1a1,0 A2)

= det
(

I2 − Atr(A) + A2det(A)
)

= (1− det(A))2
(
(1− a0,1 − a2

0,0)(1− a0,1 − a2
1,1)− a0,1a1,0tr(A)

)
= (1− det(A))2

(
(1 + det(A))2 − tr(A)2

)
.

(41)

By Lemma 4 and (41), we have det(I4 − A⊗ A) > 0. Thus, Lyapunov Equation (5) has
the solution for Σ̂, as the matrix (I4 − A⊗ A) is invertible. The converse of this theorem
does not hold, as we construct a counter-example of the coefficient matrix A such that
det(I4 − A⊗ A) < 0, with which there is a Σ̂ ∈ R2×2

+ , but such a VAR is not stable.

5. Design of Bivariate Timeseries Given GCs

The goal of this study was to derive a design principle of bivariate timeseries generated
by a VAR model with the desired correlation and two types of Granger causality. In this
section, we explore the inter-dependent relationships among the variables in the VAR.
This analysis revealed a trade-off limitation in designing these variables of timeseries.
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Specifically, a timeseries with a certain range of desired Granger causality cannot be
realized by a stable VAR, in which no stationary covariance is defined in theory.

The set of parameters in any stable VAR model includes

• The coefficient matrix A;
• The base covariance matrix Σ;
• The stationary covariance matrix Σ̂; and
• The two types of Granger causality G0, G1.

There are equality constraints on these variables:

• The variables A, Σ, Σ̂ need to satisfy the Lyapunov Equation (4).
• Granger causality Gi (i = 0, 1) is the function of ai,1−i, σi,i, and Σ̂ (Lemma 2).

Besides, it is important to know the feasibility of a set of parameters in VAR, which
constrains the range of these variables:

• Stability: A ∈ R2×2
∗ (Section 4);

• Properness: Σ, Σ̂ ∈ R2×2
+ (Section 4) and σi,i ≤ σ̂i,i due to the existence of a solution

for the Lyapunov equation; and
• The bound for each Granger causality: Gi ∈ [0, log γi] (Lemma 3).

The Lyapunov Equation (4) on the matrices can be decomposed into the three equa-

tions on the scalar variables as follows. For a coefficient matrix A =

(
a0,0 a0,1
a1,0 a1,1

)
, let us

define two vectors by

a0 :=
(

a0,0
a0,1

)
, a1 :=

(
a1,0
a1,1

)
.

The Lyapunov equation is then equivalently written with these vectors a0, a1 by the set of
the three equations

σ̂0,0 − σ0,0 = a>0 Σ̂a0 (42)

σ̂1,1 − σ1,1 = a>1 Σ̂a1 (43)

σ̂0,1 − σ0,1 = a>0 Σ̂a1. (44)

Equations (42) and (43) above imply that each of the vectors a0 and a1 are on an ellipsis
on each of their planes. This gives the lower bound for σ̂i,i ≥ σi,i (i.e., one condition of the
properness above), as x>Σ̂x ≥ 0 for any x ∈ R2 with a positive-definite matrix Σ̂.

Fixing G0 and G1 imposes each of the two vectors a0 and a1 on the two parallel lines by

(a>i σ̂i)
2 = τ2

i , (45)

where
σ̂i := (σ̂i,0, σ̂i,1)

>, τ2
i := σ̂2

i,i

(
1− γ−1

i eGi
)

.

Thus, the solution of ai which satisfies the Lyapunov equation and the fixed Granger
causality is the four intersections of the ellipsis and the two parallel lines (Figure 2).
This ellipsis is obtained by scaling and shearing transformation to the standard circle
a2

0,0 + a2
0,1 = 1. This observation gives the angular parametrization of the solution vector

(a0,0, a0,1)
>, which is explicitly stated by Lemma 5 in the next section.
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Figure 2. The ellipsis (42) and two parallel lines (45) (forming the parallelogram touching the ellipsis)
on the plane (a0,0, a0,1) ∈ R2. The solution (a0, a1) is four intersections of these two (depicted by the
colored points). Granger causality takes its maximum with the largest |a0,1| on the ellipsis and its
minimum with |a0,1| = 0.

5.1. Solution A of the Lyapunov Equality Given Σ̂, G0, and G1

In what follows, we start with the derivation of the coefficient matrix A as a root of
the equality constraint by the Lyapunov Equation (4) and the Granger causality, for a fixed
proper Σ̂, σi,i and Gi for each i = 0, 1. The following Lemma 5 gives a necessary condition
for the coefficient matrix A ∈ R2×2 to satisfy the equality conditions above. Note, however,
that such a solution A in this equation does not guarantee the stability of the corresponding
VAR (i.e., A ∈ R2×2

∗ ). This sufficiency is explored in Section 5.2.

Lemma 5. For a given set of parameters, a positive-definite matrix Σ̂ =

(
σ̂0,0 σ̂0,1
σ̂1,0 σ̂1,1

)
∈ R2×2

+ ,

σi,i ∈ (0, σ̂i,i), Gi ∈ [0, log γi] for each i = 0, 1, suppose that a coefficient matrix

A =

(
a0,0 a0,1
a1,0 a1,1

)
∈ R2×2, satisfies the set of the equations



a>0 Σ̂a0 = σ̂0,0 − σ0,0

a>1 Σ̂a1 = σ̂1,1 − σ1,1(
σ̂>0 a0

)2
= τ2

0(
σ̂>1 a1

)2
= τ2

1

, (46)

where for i = 0, 1
σ̂i := (σ̂i,0, σ̂i,1)

>, τ2
i := σ̂2

i,i

(
1− γ−1

i eGi
)

.

Any coefficient matrix A of a root of this Equation (46) is in the form

A =

(
S0

(
cos θ0
sin θ0

)
P2S1

(
cos θ1
sin θ1

))>
, (47)

where each pair of the angles θ0 ∈ [0, 2π) and θ1 ∈ [0, 2π) takes one of the two or four pairs
satisfying for each i = 0, 1

sin2 θi =
eGi − 1
γi − 1

(48)
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and

P2 :=
(

0 1
1 0

)
, Si :=

√
1− γ−1

i

(
1 − σ̂i,1−i

σ̂i,i

0 1

)1 0
0 σ̂i,i√

det(Σ̂)

.

Proof. Find that the following pair of equations in (46) is symmetric under exchange of
i = 0, 1: {

a>i Σ̂ai = σ̂i,i − σi,i(
σ̂>i ai

)2
= τ2

i

. (49)

Thus, we solve this for i = 0 below, and it holds for i = 1.
Solving the second equation of (49) for a0,0, we have

a0,0 =
±τ0 − a0,1σ̂0,1

σ̂0,0
. (50)

Inserting this into the first equation of (49), we have

a2
0,1 =

σ̂2
0,0(1− γ−1

0 )− τ2
0

det
(
Σ̂
) . (51)

Inserting τ2
0 = σ̂2

0,0

(
1− γ−1

0 eG0
)

, we have

a0,1 = ±
√

σ̂0,0σ0,0(eG0 − 1)
det
(
Σ̂
) . (52)

Inserting this into (50), we have at most four vectors a0 = (a0,0, a0,1)
> as the solution of (49)

for i = 1:

a0 =

(
c0 −

σ̂0,1
σ̂0,0

d0

d0

)
,

(
c0 +

σ̂0,1
σ̂0,0

d0

−d0

)
,

(
−c0 −

σ̂0,1
σ̂0,0

d0

d0

)
,

(
−c0 +

σ̂0,1
σ̂0,0

d0

−d0

)
, (53)

where for i = 0, 1

ci :=
√

1− γ−1
i eGi , di :=

√
σ̂i,iσi,i(eGi − 1)

det
(
Σ̂
) .

By symmetry to i = 0, 1, there are at most four vectors as the solution of (49) for i = 1:

P2a1 =

(
a1,1
a1,0

)
=

(
c1 −

σ̂1,0
σ̂1,1

d1

d1

)
,

(
c1 +

σ̂1,0
σ̂1,1

d1

−d1

)
,

(
−c1 −

σ̂1,0
σ̂1,1

d1

d1

)
,

(
−c1 +

σ̂1,0
σ̂1,1

d1

−d1.

)
(54)

Find that these four solution vectors parameterized by

a0 = S0

(
cos θ0
sin θ0

)
and a1 = P2S1

(
cos θ1
sin θ1

)
,

satisfy (49), if (θ0, θ1) holds (48), with the trigonometric identity cos2 θi + sin2 θi = 1 and

S>0 Σ̂S0 = (σ̂0,0 − σ0,0)I2 and S>1 P>2 Σ̂P2S1 = (σ̂1,1 − σ1,1)I2. (55)

5.2. Sufficiency of the Solution

For a given set of parameters, Lemma 5 in the previous section gives a set of solutions
of the coefficient matrix A for the Lyapunov equation. Note that not all of these solutions
A are feasible, in the sense that they satisfy all constraints such as the stability of A ∈ R2×2

∗
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and the properness of Σ ∈ R2×2
+ , in which Σ can be derived from Lyapunov Equation (4)

given A and Σ̂. The following lemmas provide the sufficient condition for a solution A by
checking the properness of Σ and the stability of A.

Lemma 6. Suppose A is a solution of Equation (46) in Lemma 5, represented by a pair of (θ0, θ1).
In this case, Σ ∈ R2×2

+ , if and only if

cos η̂ − (γ0γ1)
− 1

2 ≤ γ̂0γ̂1 cos(η̂ − θ0 − θ1) ≤ cos η̂ + (γ0γ1)
− 1

2 , (56)

where η̂ ∈ [0, 2π] is the angler parametrization of the correlation coefficient defined by cos η̂ :=
σ̂0,1√
σ̂0,0σ̂1,1

and γ̂i =
√

1− γ−1
i .

Proof. Applying the polar representation of the a0, a1 in (47) in Lemma 5 to the third
Equation (44) of the Lyapunov equation, we have

σ̂0,1 − σ0,1 =
√
(σ̂0,0 − σ0,0)(σ̂1,1 − σ1,1) cos(η̂ − θ0 − θ1). (57)

By the positive definiteness of Σ, σ2
0,1 ≤ σ0,0σ1,1. This inequality applied to (57) gives

the lemma.

If we have

γ̂0γ̂1 ≤ cos η̂ + (γ0γ1)
− 1

2 and cos η̂ − (γ0γ1)
− 1

2 ≤ −γ̂0γ̂1,

Equation (56) holds for any pair of angles (θ0, θ1). This condition is

| cos η̂| ≤ (γ0γ1)
− 1

2 − γ̂0γ̂1,

or
|σ̂0,1| ≤

√
σ0,0σ1,1 −

√
(σ̂0,0 − σ0,0)(σ̂1,1 − σ1,1). (58)

On the other hand, (56) holds for any 0 < η̂ < π (equivalently −1 < cos η̂ < 1) if
√

γ0γ1 − 1√
(γ0 − 1)(γ1 − 1)

≤ cos(θ0 + θ1) ≤
√

γ0γ1 + 1√
(γ0 − 1)(γ1 − 1)

. (59)

These bounds (58) and (59) mean that the range of feasible GCs (θ0, θ1) and the range of
feasible correlation cos η̂ are in a trade-off relationship in general.

Lemma 7. The VAR with the correlation | cos(η̂)| < 1 and Granger causality θ0, θ1 in the angular
form is stable if and only if

− sin η̂ + |γ̂0 sin(η̂ − θ0) + γ̂1 sin(η̂ − θ1)| < γ̂0γ̂1 sin(η̂ − θ0 − θ1) < sin η̂. (60)

Proof. Using the angular notation of the solution A with θ0, θ1, we have

det(A) = γ̂0γ̂1
sin(η̂ − θ0 − θ1)

sin η̂
and tr(A) =

γ̂0 sin(η̂ − θ0) + γ̂1 sin(η̂ − θ1)

sin η̂
.

Inserting these into stability condition (23), we have the inequality (60).

As well as Lemma 6, Lemma 7 leads the trade-off relationship between Σ̂ in the angle
from η̂ and A in the angle from θ0, θ1. In general, this bound further narrows the upper and
lower bounds given by Lemma 3. In general, correlation is limited to close to zero if one
wishes for higher Granger causality. On the other hand, the two types of Granger causality
are limited to close to zero if one wishes for a higher correlation in the absolute value.
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6. Concluding Remarks
6.1. Summary and Potential Usage of the Algorithm

In this paper, we explored the relationship between the VAR parameters and timeseries
statistics (Figure 1), and identified the trade-off limitation between the stationary covariance
Σ̂ and Granger causality G0, G1 (Lemma 6). This suggests that the following Algorithm 1
will generate a timeseries with desired statistics.

Algorithm 1: Compute a VAR parameter set for the desired statistics

Data: Desired timeseries statistics (G0, G1, Σ̂, σ0,0, σ1,1) in the feasible range satisfy
both inequalities (56) in Lemma 6 and (60) in Lemma 7.

1 Derive four sets of VAR parameters (A, Σ) for the given timeseries statistics
(G0, G1, Σ̂, σ0,0, σ1,1) by Lemma 5

2 Choose one of the four sets of VAR parameters (A, Σ).
Result: The VAR parameters (A, Σ).

This data-generation algorithm can be used to generate surrogate data [19], which
can be used to test whether an empirical timeseries is a sample from a VAR with a given
correlation and Granger causality. This algorithm is also useful in analyzing to what extent
a class of VAR timeseries varies under the same statistics.

6.2. Validity of Granger Causality Estimated on Empirical Timeseries

Our analysis also warns that not all Granger causality (or transfer entropy) is “valid”,
in the sense that its underlying VAR model is not stable and thus the Granger causality
is undefined in theory. In theory, we can identify some value of Granger causality for a
finite empirical time series, which is generated by an underlying unstable VAR model
without any stationary statistics. Such timeseries statistics will diverge in the long run,
but it may be difficult to identify this with a finite empirical timeseries. This asymmetry—
namely, that the Granger causality can be calculated numerically but does not guarantee
the stability of the underlying VAR—is explicitly demonstrated by Theorem 1. For a given
empirical timeseries v = (v0, v1, . . . , vT) ∈ R2×(T+1), one should calculate not just the
Granger causality but also its validity by checking (1) A ∈ R2×2

∗ , (2) Σ ∈ R2×2
+ , and (3)

Σ0,1 ≤ Σ̂0,1, by calculating the maximum likelihood estimator of (A(v), Σ(v)), such as

A(v) := V1,0V−1
0,0 and Σ(v) = V1,1 −V1,0V−1

0,0 V0,1,

where

Vi,j := T−1
T

∑
t=1

vt−1+iv>t−1+j.

In fact, Σ(v) is always (semi-)positive definite, as it takes the form of the Schur comple-

ment of the (semi-)positive-definite matrix
(

V0,0 V0,1
V1,0 V1,1

)
. Thus, this maximum likelihood

estimator readily satisfies condition (2).

6.3. Future Work

In this paper, we limit the VAR model to be bivariate for simplicity of analysis. We
expect it is possible to generalize the current result to any higher dimensional VAR model.
In such a generalization, feasible boundaries for the stable VAR models may require further
effort to understand.
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