entropy-logo

Journal Browser

Journal Browser

Entropic Forces in Complex Systems II

A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Complexity".

Deadline for manuscript submissions: closed (20 December 2022) | Viewed by 3941

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mathematics and Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA
Interests: data analysis; stochastic nonlinear dynamics; urban studies; complexity and uncertainty in the real-world systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Entropic forces are the emergent phenomena resulting from an entire system’s statistical tendency to increase its entropy. Entropic forces have attracted considerable attention as ways to reformulate, retrodict, and perhaps even “explain” classical Newtonian gravity from a rather specific thermodynamic perspective, as Verlinde suggested. Alex Wissner-Gross and Cameron Freer recently proposed “a causal generalization of entropic forces” that they showed can induce certain patterns of behavior with some very striking characteristics. One would not predict those outcomes by looking purely at the constraints that produce them. Underlying this set of intriguing behaviors is the computational capability to integrate all possible futures to maximize the rate of entropy production over an entire trajectory. The observed behavior bears striking resemblance to examples we have seen in swarm intelligence (e.g., ant colonies, bird flocking, animal herding, bacterial growth, and fish schooling), communities, and in urban studies. The process of sampling alternative paths and behaviors reveals the essential features of quantum mechanics, one of which is the inclination of electrons to “explore all paths” that can be viewed as part of a search process, bounded in space by maximal causal entropy and in time by minimum coordination latency. In the proposed Special Issue, we aim to organize a broad discussion on the application of the entropic force concept in studies of real-world complex systems.

Prof. Dr. Dimitri Volchenkov
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • entropic force
  • data clustering
  • colloids and depletion force
  • entropic gravity
  • entropic elasticity
  • swarm intelligence
  • entropic force in society and urban studies

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4479 KiB  
Article
Elastic Entropic Forces in Polymer Deformation
by Vladimir I. Kartsovnik and Dimitri Volchenkov
Entropy 2022, 24(9), 1260; https://doi.org/10.3390/e24091260 - 07 Sep 2022
Cited by 5 | Viewed by 1807
Abstract
The entropic nature of elasticity of long molecular chains and reticulated materials is discussed concerning the analysis of flows of polymer melts and elastomer deformation in the framework of Frenkel–Eyring molecular kinetic theory. Deformation curves are calculated in line with the simple viscoelasticity [...] Read more.
The entropic nature of elasticity of long molecular chains and reticulated materials is discussed concerning the analysis of flows of polymer melts and elastomer deformation in the framework of Frenkel–Eyring molecular kinetic theory. Deformation curves are calculated in line with the simple viscoelasticity models where the activation energy of viscous flow depends on the magnitude of elastic entropic forces of the stretched macromolecules. The interconnections between deformation processes and the structure of elastomer networks, as well as their mutual influence on each other, are considered. Full article
(This article belongs to the Special Issue Entropic Forces in Complex Systems II)
Show Figures

Graphical abstract

7 pages, 707 KiB  
Article
Magnetic Entropic Forces Emerging in the System of Elementary Magnets Exposed to the Magnetic Field
by Edward Bormashenko
Entropy 2022, 24(2), 299; https://doi.org/10.3390/e24020299 - 20 Feb 2022
Cited by 1 | Viewed by 1517
Abstract
A temperature dependent entropic force acting between the straight direct current I and the linear system (string with length of L) of N elementary non-interacting magnets/spins μ is reported. The system of elementary magnets is supposed to be in the thermal [...] Read more.
A temperature dependent entropic force acting between the straight direct current I and the linear system (string with length of L) of N elementary non-interacting magnets/spins μ is reported. The system of elementary magnets is supposed to be in the thermal equilibrium with the infinite thermal bath T. The entropic force at large distance from the current scales as Fmagnen~1r3, where r is the distance between the edge of the string and the current I, and kB is the Boltzmann constant; (rL is adopted). The entropic magnetic force is the repulsion force. The entropic magnetic force scales as Fmagnen~1T, which is unusual for entropic forces. The effect of “entropic pressure” is predicted for the situation when the source of the magnetic field is embedded into the continuous media, comprising elementary magnets/spins. Interrelation between bulk and entropy magnetic forces is analyzed. Entropy forces acting on the 1D string of elementary magnets that exposed the magnetic field produced by the magnetic dipole are addressed. Full article
(This article belongs to the Special Issue Entropic Forces in Complex Systems II)
Show Figures

Figure 1

Back to TopTop