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Abstract: A temperature dependent entropic force acting between the straight direct current I and the
linear system (string with length of L) of N elementary non-interacting magnets/spins

→
µ is reported.

The system of elementary magnets is supposed to be in the thermal equilibrium with the infinite
thermal bath T. The entropic force at large distance from the current scales as Fen

magn ∼ 1
r3 , where r is

the distance between the edge of the string and the current I, and kB is the Boltzmann constant; (r � L
is adopted). The entropic magnetic force is the repulsion force. The entropic magnetic force scales
as Fen

magn ∼ 1
T , which is unusual for entropic forces. The effect of “entropic pressure” is predicted

for the situation when the source of the magnetic field is embedded into the continuous media,
comprising elementary magnets/spins. Interrelation between bulk and entropy magnetic forces is
analyzed. Entropy forces acting on the 1D string of elementary magnets that exposed the magnetic
field produced by the magnetic dipole are addressed.

Keywords: entropic force; magnetic field; linear system of elementary magnets; ordering; temperature;
repulsion force

1. Introduction

So-called entropic forces has attracted the attention of investigators in last few decades.
An entropic force acting in a system is an emergent phenomenon resulting from the entire
system’s statistical tendency to increase its entropy [1,2]. Entropic force represents the
tendency of a system to evolve into a more probable state, rather than simply into one
of lower potential energy [1,2]. A classic example of an entropic force is the temperature
dependent elasticity of a freely-jointed polymer chain [3,4]. For an ideal polymer chain,
maximizing its entropy means reducing the distance between its two free ends [3,4]. Conse-
quently, an entropic elastic force that tends to collapse the chain is exerted by the ideal chain
between its two free ends [3,4]. Muscles of mammals are also driven by entropy forces [5].
As it has been shown, elasticity in the giant muscle protein titin arises from entropy in
a way very similar to the entropy-driven elasticity of polymer chains [5]. The so-called
“hydrophobic effect” represents additional exemplification of the entropy-forces-driven
phenomena. The hydrophobic interaction originates from the disruption of hydrogen bonds
between molecules of liquid water by the nonpolar solute [6]. By aggregating together,
nonpolar molecules reduce the surface area exposed to water and minimize the effect [6].
This reducing of the surface is thermodinamically (entropically) favorable, giving rise to the
clustering of small hydrophobic particles [6]. An interest to entropic force was strengthened
after the suggestion of Verlinde, who hypothesized the entropic nature of gravity [7]. The
entropic origin of gravity was discussed in detail in Refs. [8,9]. It was shown that classical
Newtonian gravity may be interpreted in terms of an entropic force [8,9]. The entropy ori-
gin of gravity was criticized in Refs. [10–12], and the problem remains open and debatable.
Motivated by Verlinde’s theory of entropic gravity, a tentative explanation to the Coulomb’s
law with an entropic force was suggested [13]. We demonstrate the temperature dependent
magnetic entropic forces emerging when a string of elementary magnets is exerted to the
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magnetic field, which tends to order the magnets and in turn to diminish the entropy of
the system.

2. Results and Discussion
2.1. Thermodynamics of Magnetics: Origin of Entropy Forces

The general expression for the Helmholtz free energy Φ of a magnetic material exposed
to the external magnetic field is supplied by Equation (1):

dΦ = −SdT − TdS + ζdN +
1
2

→
H·
→
BdV (1)

where S, T, and V are the entropy, temperature, and volume of the magnetic body corre-

spondingly,
→
H and

→
B are the magnetic field and magnetic flux intensities, and ζ and N

are the chemical potential and the number of particles in the magnetic body correspond-
ingly [14,15]. Consider the isothermal magnetic body (T = const) when the number of the
particles N is fixed. In this case, we obtain:

dΦ = −TdS +
1
2

→
H·
→
BdV (2)

The first term in Equation (2) will give rise to the so-called entropic forces [4–6},
whereas the second term is responsible for the magnetic forces which we label in our text
“the bulk magnetic forces”, or for purposes of brevity “bulk forces”. The bulk forces are
addressed in detail in Ref. [14]. Consider that, in the classical textbook by Landau and
Lifshitz [14], the thermo-isolated magnetic is analyzed in detail and consequently dS = 0
is implied. We treat in our paper the “entropic term” of Equation (2) and the entropic
forces emerging from this term, under comparison of the entropic magnetic forces to the
bulk ones.

2.2. Entropic Magnetic Forces Acting on a Magnetic Body Appearing in the Field Produced by
Infinite Direct Current

Consider the linear (1D) string of elementary non-interacting magnets (spins)
→
µ

exerted to the magnetic field generated by a straight, infinite, direct current located, as
depicted in Figure 1.
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Figure 1. The linear system (string) of elementary magnets shown with arrows exerted to the perma-
nent magnetic field generated by the infinite direct current I is depicted. Current I is perpendicular to
the plane of the drawing. The length of the string is L; the distance between the current and the edge
of the string is r.

We assume that there are N separate and distinct sites fixed in a space and aligned, as
shown in Figure 1. Attached to each site is an elementary magnet, which can point only up
or down, as shown in Figure 1. The total length of the string is L, and the linear density
of the magnets Ñ, defined according to Equation (3), is supposed to be constant along
the string:

Ñ =
N
L

= const (3)
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The suggested 1D string built of elementary magnets/spins
→
µ is embedded into

magnetic field
→
H generated by the infinite straight current H(r) = I

2πr , as shown in
Figure 1, leading to the spin orientation. The potential energy of a single elementary
magnet in the magnetic field is given in the SI system of units by Equation (4):

U(r) = −µ0
→
µ ·
→
H(r) (4)

where µ0 is the vacuum permeability. Assume also that the system of spins is in the thermal
equilibrium with the surrounding (thermal bath) under the constant temperature T (the
system is isothermal). Let us divide the string of the magnets into “sub-strings” as follows:
let dNi be the number of spins in the sub-string dri numbered “i”, the magnetic field within
the string is H(ri) =

I
2πri

(distance ri is shown in Figure 1). The entropy of the sub-string Si
was addressed in detail in [16,17], and within the approximation of the weak magnetic field,
i.e., when µ0µH � kBT takes place (kB is the Boltzmann constant and T is the temperature),
the entropy is given by Equation (5) (consider dNi = Ñdri):

Si = S0i −
µ2

0µ2H2ridNi

2kBT2 = S0i −
Ñµ2

0µ2 I2dri

8π2kBT2r2
i

(5)

where dri is the length of the “ith” sub-string, dNi is the number of spins in the “ith”
sub-string dri, and S0i = kBln Ni!

( 1
2 Ni!)(( 1

2 Ni!))
∼= kB

[
Niln2− 1

2 ln 2
πNi

]
(in the Stirling approxi-

mation) is the constant. It is latently adopted that a sub-string contains a “large” number of
spins, enabling the statistical approach; for details, see [16,17], in which the field of validity
of Equation (5) is carefully addressed. The total entropy S of the string of spins exerted to
the magnetic field generated by the infinite straight direct current I, depicted in Figure 1, is
given by Equation (6):

S =
n

∑
i=1

Si = S0 −
∫ r+L

r

Ñµ2
0µ2 I2

8π2kBT2r2 dr (6)

where n is the total number of the sub-strings, L is the total length of the string, and
S0 = ∑n

i=1 Soi. Integration in Equation (6) yields Equation (7) (consider Equation (3) and
Ñ = const):

S = S0 −
ÑLµ2

0µ2 I2

8πkBT2r(r + L)
= S0 −

Nµ2
0µ2 I2

8π2kBT2r(r + L)
(7)

The entropic magnetic force Fen
magn emerging from Equations (2) and (7) is given by

Equation (8) (see [3,4]):

Fen
magn = −dΦ

dr
= T

∂S
∂r

(8)

Substitution of Equation (7) into Equation (8) supplies the expression for the entropic force:

Fen
magn =

Nµ2
0µ2 I2

8π2kBT
2r + L

r2(r + L)2 (9)

Equation (7) for the large distances, i.e., r � L is transformed into the following expression:

S = S0 −
ÑLµ2

0µ2 I2

8π2kBT2r2 = S0 −
Nµ2

0µ2 I2

8π2kBT2r2 (10)

The entropic magnetic force Fen
magn for the large distances, i.e., r � L is given eventually

by Equation (11) (see Equation (8)):

Fen
magn =

Nµ2
0µ2 I2

4π2kBTr3 (11)
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The eventual Equation (11) deserves the discussion. First of all, it should be emphasized

that the derived magnetic force Fen
magn =

Nµ2
0µ2 I2

4π2kBTr3 is always the repulsion force; this is intu-
itively a well-expected prediction. Indeed, whatever is the location of string, the magnetic
field always decreases the entropy of the entire string, under ordering of the elementary
magnets, which is recognized from Equations (5)–(7), which is thermodynamically un-
favorable under isothermal conditions. In addition, the repulsion nature of the entropy
magnetic force is independent on the direction of the current I, as it is immediately seen
from Equations (9) and (11). This result supplies an important prediction: consider the
direct current embedded into the continuous medium built of the elementary magnets
→
µ , as shown in Figure 2. The magnetic entropic force will repulse elementary magnets,
wherever they are located. Thus, in the continuous medium comprising elementary mag-
nets/spins, the phenomenon of the “entropic pressure” stimulated by the external source of
the magnetic field (current) is predicted. Recall that the isothermal pressure of an ideal gas
is also a pure entropic phenomenon. The entropic force supplied by Equations (9) and (11)
will appear for both diamagnetic and paramagnetic materials, seen as ensembles of elemen-
tary magnets.
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Figure 2. Direct current I embedded into the medium built of magnetic moments
→
µ . The magnetic

entropic force given by Equation (9) will repulse the magnetic moments, thus giving rise to the
“entropic pressure phenomenon”.

In the exotic case of negative absolute temperatures, corresponding to the population-
inverted regime, when a spectrum of the system is bounded, the magnetic entropic force
becomes the attraction force [18,19]; however, the separate discussion of this perplexed
situation is demanded [20,21].

Secondarily, the entropic magnetic force scales as Fen
magn = const

T , and this is quite
surprising for the entropic forces, which are usually growing with temperature [3,4,7–13].
The entropic elastic force inherent for an ideal polymer chain appears as:

→
F

en

polym =
3kBT
Nkb2

→
R (12)

where Nk is the number of the Kuhn segments in the chain, b is the length of the Kuhn

segment, and
→
R is the end-to end-distance of the chain [4]. It is seen that this force

scales as Fen
polym ∼ T, and it is opposite to the temperature scaling law recognized from

Equations (9) and (11). However, in our case, this result is quite predictable; consider that
the temperature movement withstands the magnetic ordering of spins, and thus prevents
their magnetic ordering imposed by the external magnetic field; hence, the temperature-
related influence is expected to diminish the magnetic entropic force. It is also seen
from Equations (9) and (11) that the entropic elasticity in polymers scales as Fen

polym ∼
1

Nk
,

whereas the magnetic entropic force scales as Fen
magn ∼ N, which is also indeed quite

intuitively clear, and the growth of the total number of the spins strengthens the entire
entropic magnetic effect.

Last but not least, the magnetic entropy force scales as Fen
magn = const

r3 , and it grows
rapidly with the decrease of the distance r. The qualitative reasoning for this result is also
quite clear: the smaller the distance between the source of the magnetic field and the string
of the spins, the larger is the ordering effect; consequently, the larger is decrease in the total
entropy of the string, which is thermodynamically unfavorable.
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It also should be taken into account that the magnetic entropic force stems from the
entropy gradient (see Equation (8)); the effect of ordering itself will not give rise to the
discussed entropic effect. Consider a string of elementary magnets embedded into the
ideal solenoid; assume that the string coincides with the axis of the solenoid. The magnetic
field produced by the solenoid will order the elementary magnets and an entropy will be
uniformly decreased within a string; however, the entropic magnetic force in this case will
be zero due to the fact that the gradient of entropy along the string is absent.

It is instructive to compare the entropic magnetic force with the bulk forces acting on
the body embedded into magnetic field, and arising from the second term of Equation (2).

Consider a diamagnetic body embedded into magnetic field
→
B ; the bulk repulsion force

Fbulk
magn acting on the body is given in Equation (13):

Fbulk
magn =

∫ ∫ ∫
V

∆χ

→
B ·∇

→
B

µ0
dV ∼= ∆χ

→
B ·∇

→
B

µ0
V (13)

where V is the volume of the body, and ∆χ is the contrast in magnetic susceptibilities [14].
Let us compare the bulk and entropic magnetic force and define the dimensionless constant
Ψ according to Equation (14):

Ψ =
Fen

magn

Fbulk
magn

(14)

Consider diamagnetic body with a volume of V embedded into the magnetic field produced

by the infinite direct current I, as shown in Figure 1. Taking into account:
→
B ∼= µ0

→
H;H = I

2πr
and simple calculations yield:

Ψ =
N
V

µ0µ2

∆χkBT
=

µ0nµ2

∆χkBT
(15)

where n = N
V is the volume concentration of elementary magnets. Quite remarkably,

the dimensionless number Ψ is independent on the spatial location of the diamagnetic
body, and it scales with temperature as Ψ = const

T (consider that magnetic susceptibility is
practically independent on the temperature for diamagnetic materials); thus, the entropic
repulsion is expected to prevail on the bulk magnetic force under the low temperatures.

2.3. Entropic Magnetic Forces in the Field Produced by the Magnetic Dipole

It is also instructive to calculate the entropic magnetic force acting on the string of ele-
mentary magnets µ embedded into the field produced by the magnetic moment (current loop)
→
M located, as shown in Figure 3. In this case, H = M

4πr3 ; substitution into Equation (5) yields:

Si = S0i −
Ñµ2

0µ2M2dri

32π2kBT2r6
i

(16)

Integration of Equation (5) (s demonstrated above) and calculation of the entropic force
yield for r � L:

S = S0 −
Nµ2

0µ2M2

32π2kBT2r6 (17)

Fen
magn =

3Nµ2
0µ2M2

16π2kBTr7 (18)

Again, the magnetic entropic force is the repulsion force, and it scales as Fen
magn = const

T . It
will be also instructive to calculate the dimensionless number Ψ describing interrelation of
the bulk and entropic magnetic forces, acting on the diamagnetic string and introduced in



Entropy 2022, 24, 299 6 of 7

the previous section. For the string of elementary magnets embedded in the magnetic field
produced by the magnetic dipole, we calculate:

Ψ =
9

π2
µ0nµ2

∆χkBT
∼=

µ0nµ2

∆χkBT
(19)

which coincides within the numerical factor close to unity with that given by Equation (15).
Again, the dimensionless number Ψ supplied by Equation (19) is independent on the
spatial location of the diamagnetic body, and it scales with temperature as Ψ = const

T ;
thus, the entropic magnetic repulsion will prevail on the bulk magnetic force under the
low temperatures.

The force supplied by Equation (18) corresponds to the entropic potential energy of
interaction between the string of elementary magnets µ and magnetic moment (current

loop)
→
M :

Uen
magn(r) =

Nµ2
0µ2M2

32π2kBTr6 + const (20)
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permanent magnetic field generated by the magnetic dipole
→
M I is depicted. The length of the string

is L; the distance between the center of the magnetic dipole and the edge of the string is r.

3. Conclusions

We report the entropic force emerging in the linear system of N elementary non-

interacting magnets (spins
→
µ ) exerted to the external magnetic field

→
H, which tends to order

the spins, and consequently to diminish the entropy of entire system. Thermal equilibrium
with the thermal bath T is adopted. We considered the string of elementary non-interacting
magnets with the length of L, exposed to the permanent magnetic field generated by straight
infinite current I. The calculation of the magnetic entropic force, arising from the entropy

gradient, yielded the expression: Fen
magn =

Nµ2
0µ2 I2

4π2kBTr3 , where r is the distance between the
current I and the edge of the string of elementary magnets (spins), which holds for the “long
distance” approximation, namely when r � L is adopted. The entropic magnetic force
is the repulsion force. Somewhat surprisingly, it scales as Fen

magn = const
T ; consider that the

entropic forces usually grow with temperature. This prediction becomes understandable if
we take into account that the temperature inspired chaos withstands the magnetic ordering
of spins, and thus prevents their magnetic ordering imposed by the external magnetic field;
hence, the increase in temperature is expected to diminish the magnetic entropic force.
The magnetic entropic force scales as Fen

magn ∼ N, which is also quite intuitively clear: the
growth of the number of the spins strengthens the entire entropic magnetic effect. The
effect of “entropic pressure” is predicted for the situation when the current is embedded
into the continuous media, comprising elementary magnets/spins. The exact expression
for the entropic magnetic forces, which is valid for the entire range of distances, is supplied.
Entropy forces acting on the 1D string of elementary magnets exposed the magnetic field
produced by the magnetic dipole are treated.

We also studied interrelation between bulk and entropy magnetic forces. The dimen-

sionless number Ψ =
Fen

magn

Fbulk
magn

= µ0nµ2

∆χkBT describing this interrelation was introduced. The value
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of Ψ is remarkably independent on the spatial location of the diamagnetic body, and it
scales with temperature as Ψ = const

T ; thus, the entropic magnetic repulsion is expected to
prevail on the bulk magnetic force under the low temperatures. Entropy forces, acting on
the 1D string of elementary magnets exposed the magnetic field produced by the magnetic
dipole, are addressed.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is thankful to Yelena Bormashenko for inspiring discussions and
help in preparing the figures. The author is also thankful to anonymous reviewers for the extremely
instructive and fruitful reviewing of the manuscript. The author is thankful to Mikhail Zubkov and
Oleg Gendelman for extremely useful discussions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Taylor, P.T.; Tabachnik, J. Entropic forces—Making the connection between mechanics and thermodynamics in an exactly soluble

model. Eur. J. Phys. 2013, 34, 729. [CrossRef]
2. Roos, N. Entropic forces in Brownian motion. Am. J. Phys. 2014, 82, 1161–1166. [CrossRef]
3. Pohl, R.W. Mechanik, Akustik and Wärmelehere; Springer: Berlin/Heidelberg, Germany, 1964.
4. Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford Press: New York, NY, USA, 2003.
5. Tskhovrebova, L.; Trinick, J.; Sleep, J.A.; Simmons, R.M. Elasticity and unfolding of single molecules of the giant muscle protein

titin. Nature 1997, 387, 308–312. [CrossRef] [PubMed]
6. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647. [CrossRef] [PubMed]
7. Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 2011, 29. [CrossRef]
8. Visser, M. Conservative entropic forces. J. High Energy Phys. 2011, 2011, 140. [CrossRef]
9. Lee, J.W. On the Origin of Entropic Gravity and Inertia. Found. Phys. 2012, 42, 1153–1164. [CrossRef]
10. Kobakhidze, A. Gravity is not an entropic force. Phys. Rev. D 2011, 83, 021502(R). [CrossRef]
11. Gao, S. Is Gravity an Entropic Force? Entropy 2011, 13, 936–948. [CrossRef]
12. Yang, R. Is Gravity Entropic Force? Entropy 2014, 16, 4483–4488. [CrossRef]
13. Wang, T. Coulomb force as an entropic force. Phys. Rev. D 2010, 81, 104045. [CrossRef]
14. Landau, L.; Lifshitz, E.M. Electrodynamics of Continuous Media; Course of Theoretical Physics V. 8; Pergamon Press: Oxford, UK,

1960; pp. 113–117.
15. Castellano, G. Thermodynamic potentials for simple magnetic systems. J. Magn. Magn. Mater. 2003, 260, 146–150. [CrossRef]
16. Kittel, C. Thermal Physics, Ch. 4.; Wiley & Sons: Hoboken, NJ, USA, 1969; pp. 50–52.
17. Bormashenko, E. Entropy, Information, and Symmetry; Ordered Is Symmetrical, II: System of Spins in the Magnetic Field. Entropy

2020, 22, 235. [CrossRef] [PubMed]
18. Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Course of Theoretical Physics; Elsevier: Oxford, UK, 2011; Volume 5.
19. Purcell, E.M.; Pound, R.V. A Nuclear Spin System at Negative Temperature. Phys. Rev. 1951, 81, 279–280. [CrossRef]
20. Dunkel, J.; Hilbert, S. Consistent thermostatistics forbids negative absolute temperatures. Nat. Phys. 2013, 10, 67–72. [CrossRef]
21. Bormashenko, E. What Is Temperature? Modern Outlook on the Concept of Temperature. Entropy 2020, 22, 1366. [CrossRef]

[PubMed]

http://doi.org/10.1088/0143-0807/34/3/729
http://doi.org/10.1119/1.4894381
http://doi.org/10.1038/387308a0
http://www.ncbi.nlm.nih.gov/pubmed/9153398
http://doi.org/10.1038/nature04162
http://www.ncbi.nlm.nih.gov/pubmed/16193038
http://doi.org/10.1007/JHEP04(2011)029
http://doi.org/10.1007/JHEP10(2011)140
http://doi.org/10.1007/s10701-012-9660-x
http://doi.org/10.1103/PhysRevD.83.021502
http://doi.org/10.3390/e13050936
http://doi.org/10.3390/e16084483
http://doi.org/10.1103/PhysRevD.81.104045
http://doi.org/10.1016/S0304-8853(02)01286-6
http://doi.org/10.3390/e22020235
http://www.ncbi.nlm.nih.gov/pubmed/33286009
http://doi.org/10.1103/PhysRev.81.279
http://doi.org/10.1038/nphys2815
http://doi.org/10.3390/e22121366
http://www.ncbi.nlm.nih.gov/pubmed/33279912

	Introduction 
	Results and Discussion 
	Thermodynamics of Magnetics: Origin of Entropy Forces 
	Entropic Magnetic Forces Acting on a Magnetic Body Appearing in the Field Produced by Infinite Direct Current 
	Entropic Magnetic Forces in the Field Produced by the Magnetic Dipole 

	Conclusions 
	References

