energies-logo

Journal Browser

Journal Browser

Solar Energy, Governance and CO2 Emissions

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A2: Solar Energy and Photovoltaic Systems".

Deadline for manuscript submissions: 25 February 2026 | Viewed by 10451

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electrical and Electronic Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
Interests: solar energy; governance; CO2 emissions; climate change; solar technology; electric mobility; electric vehicles; energy storage; grid integration; energy policy

E-Mail Website
Guest Editor
Sustainable Energy Systems, School of Engineering and Computer Science, Victoria University of Wellington, 6140 Wellington, New Zealand
Interests: sustainability analyses of energy systems; the technical design and integration of renewable energy systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As we strive to combat climate change and ensure a sustainable future, transitioning to clean energy systems is critical, with solar energy playing a pivotal role in reducing CO2 emissions. Solar energy's potential to significantly reduce CO2 emissions is a key focus in this shift toward future governance. To explore and highlight the latest advancements in this crucial area, the Energies journal is launching a Special Issue titled "Solar Energy, Governance and CO2 Emissions". This Issue aims to showcase pioneering research and insights into solar energy and electric mobility solutions driven by effective governance to reduce CO2 emissions.

We invite contributions that address a wide range of topics, including, but not limited to, innovations in solar technology, the integration of solar energy with electric mobility solutions, the impact of climate change on future solar energy production and electric mobility, and the role of governance in facilitating CO2 emission reductions. Potential submissions might explore novel solar energy systems, advancements in energy storage and grid integration, electric vehicles and their charging infrastructure powered by solar energy, life cycle assessment and environmental impact evaluation of solar energy and electric mobility technologies, and the societal and economic impacts of solar energy and electric mobility policies.

Researchers, scientists, engineers, and policy experts are encouraged to submit original research articles and review papers that align with the scope of this Special Issue. This is an opportunity to contribute to the dialogue on how solar energy and electric mobility, supported by effective governance, can drive substantial progress in reducing CO2 emissions and achieving a sustainable energy future.

Dr. Arnold Johan Rix
Prof. Dr. Alan Brent
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solar energy
  • governance
  • CO2 emissions
  • climate change
  • solar technology
  • electric mobility
  • electric vehicles
  • energy storage
  • grid integration
  • energy policy
  • environmental impact
  • life cycle assessment
  • policy frameworks

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

26 pages, 7662 KB  
Article
The Impact of Fixed-Tilt PV Arrays on Vegetation Growth Through Ground Sunlight Distribution at a Solar Farm in Aotearoa New Zealand
by Matlotlo Magasa Dhlamini and Alan Colin Brent
Energies 2025, 18(20), 5412; https://doi.org/10.3390/en18205412 - 14 Oct 2025
Viewed by 203
Abstract
The land demands of ground-mounted PV systems raise concerns about competition with agriculture, particularly in regions with limited productive farmland. Agrivoltaics, which integrates solar energy generation with agricultural use, offers a potential solution. While agrivoltaics has been extensively studied, less is known about [...] Read more.
The land demands of ground-mounted PV systems raise concerns about competition with agriculture, particularly in regions with limited productive farmland. Agrivoltaics, which integrates solar energy generation with agricultural use, offers a potential solution. While agrivoltaics has been extensively studied, less is known about its feasibility and impacts in complex temperate maritime climates such as Aotearoa New Zealand, in particular, the effects of PV-induced shading on ground-level light availability and vegetation. This study modelled the spatial and seasonal distribution of ground-level irradiation and Photosynthetic Photon Flux Density (PPFD) beneath fixed-tilt PV arrays at the Tauhei solar farm in the Waikato region. It quantifies and maps PPFD to evaluate light conditions and its implications for vegetation growth. The results reveal significant spatial and temporal variation over a year. The under-panel ground irradiance is lower than open-field GHI by 18% (summer), 22% (spring), 16% (autumn), and 3% (winter), and this seasonal reduction translates into PPFD gradients. This variation supports a precision agrivoltaic strategy that zones land based on irradiance levels. By aligning crop types and planting schedules with seasonal light profiles, land productivity and ecological value can be improved. These findings are highly applicable in Aotearoa New Zealand’s pasture-based systems and show that effective light management is critical for agrivoltaic success in temperate maritime climates. This is, to our knowledge, the first spatial PPFD zoning analysis for fixed-tilt agrivoltaics, linking year-round ground-light maps to crop/pasture suitability. Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
Show Figures

Figure 1

25 pages, 5978 KB  
Article
Methodology for Assessing the Technical Potential of Solar Energy Based on Artificial Intelligence Technologies and Simulation-Modeling Tools
by Pavel Buchatskiy, Stefan Onishchenko, Sergei Petrenko and Semen Teploukhov
Energies 2025, 18(19), 5296; https://doi.org/10.3390/en18195296 - 7 Oct 2025
Viewed by 296
Abstract
The integration of renewable energy sources (RES) into energy systems is becoming increasingly widespread around the world, driven by various factors, the most relevant of which is the high environmental friendliness of these types of energy resources and the possibility of creating stable [...] Read more.
The integration of renewable energy sources (RES) into energy systems is becoming increasingly widespread around the world, driven by various factors, the most relevant of which is the high environmental friendliness of these types of energy resources and the possibility of creating stable generation systems that are independent of the economic and geopolitical situation. The large-scale involvement of green energy leads to the creation of distributed energy networks that combine several different methods of generation, each with its own characteristics. As a result, the issues of data collection and processing necessary for optimizing the operation of such energy systems are becoming increasingly relevant. The first stage of renewable energy integration involves building models to assess theoretical potential, allowing the feasibility of using a particular type of resource in specific geographical conditions to be determined. The second stage of assessment involves determining the technical potential, which allows the actual energy values that can be obtained by the consumer to be determined. The paper discusses a method for assessing the technical potential of solar energy using the example of a private consumer’s energy system. For this purpose, a generator circuit with load models was implemented in the SimInTech dynamic simulation environment, accepting various sets of parameters as input, which were obtained using an intelligent information search procedure and intelligent forecasting methods. This approach makes it possible to forecast the amount of incoming solar insolation in the short term, whose values are then fed into the simulation model, allowing the forecast values of the technical potential of solar energy for the energy system configuration under consideration to be determined. The implementation of such a hybrid assessment system allows not only the technical potential of RES to be determined based on historical datasets but also provides the opportunity to obtain forecast values for energy production volumes. This allows for flexible configuration of the parameters of the elements used, which makes it possible to scale the solution to the specific configuration of the energy system in use. The proposed solution can be used as one of the elements of distributed energy systems with RES, where the concept of demand distribution and management plays an important role. Its implementation is impossible without predictive models. Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
Show Figures

Figure 1

24 pages, 18390 KB  
Article
Toward Sustainable Urban Transport: Integrating Solar Energy into an Andean Tram Route
by Mayra-Gabriela Rivas-Villa, Carlos Flores-Vázquez, Manuel Álvarez-Vera and Juan-Carlos Cobos-Torres
Energies 2025, 18(19), 5143; https://doi.org/10.3390/en18195143 - 27 Sep 2025
Viewed by 349
Abstract
Climate change has prompted the adoption of sustainable measures to reduce greenhouse gas (GHG) emissions, particularly in urban transportation. The integration of renewable energy sources, such as solar energy, offers a promising strategy to enhance sustainability in urban transit systems. This study assessed [...] Read more.
Climate change has prompted the adoption of sustainable measures to reduce greenhouse gas (GHG) emissions, particularly in urban transportation. The integration of renewable energy sources, such as solar energy, offers a promising strategy to enhance sustainability in urban transit systems. This study assessed solar irradiation along the tram route in Cuenca—an Andean city characterized by distinctive topographic and climatic conditions—with the aim of evaluating the technical feasibility of integrating solar energy into the tram infrastructure. A descriptive, applicative, and longitudinal approach was adopted. Solar irradiation was monitored using a system composed of a fixed station and a mobile station, the latter installed on a tram vehicle. Readings carried out over fourteen months facilitated the analysis of seasonal and spatial variability of the available solar resource. The fixed station recorded average irradiation values ranging from 3.80 to 4.61 kWh/m2·day, while the mobile station reported values between 2.60 and 3.41 kWh/m2·day, revealing losses due to urban shading, with reductions ranging from 14.7% to 18.8% compared to fixed-site values. It was estimated that a fixed photovoltaic system of up to 1.068 MWp could be installed at the tram maintenance depot using 580 Wp panels, with the capacity to supply approximately 81% of the annual electricity demand of the tram system. Complementary solar installations at tram stops, stations, and other related infrastructure are also proposed. The results demonstrate the technical feasibility of integrating solar energy—through fixed and mobile systems—into the tram infrastructure of Cuenca. This approach provides a scalable model for energy planning in urban transport systems in Andean contexts or other regions with similar characteristics. Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
Show Figures

Figure 1

17 pages, 10687 KB  
Article
Implications of Spaceborne High-Resolution Solar Spectral Irradiance Observation for the Assessment of Surface Solar Energy in China
by Chenxi Kong, Xianwen Jing, Xiaorui Niu and Jing Jing
Energies 2025, 18(5), 1221; https://doi.org/10.3390/en18051221 - 2 Mar 2025
Viewed by 965
Abstract
Accurate solar spectral irradiance (SSI) input is key to modelling climate systems. Traditional SSI data used in the climate modelling community are based on solar model calculations joined by limited observations. Recent advances in spaceborne high-resolution solar spectrum observations, such as the National [...] Read more.
Accurate solar spectral irradiance (SSI) input is key to modelling climate systems. Traditional SSI data used in the climate modelling community are based on solar model calculations joined by limited observations. Recent advances in spaceborne high-resolution solar spectrum observations, such as the National Administration for Space and Aeronautics (NASA)’s Total and Spectral Solar Irradiance Sensor (TSIS), have provided more accurate and reliable SSI alternatives. Here, we investigate the differences between the observed and the model-based SSIs, and how these affect the modelled downward surface shortwave radiation (DSSR) over different regions of China. Special interest is dedicated to the implications for solar power estimation from solar farms. We conduct idealized calculations using the RRTMG_SW radiative transfer model, with the traditional China Meteorological Administration standard solar spectrum (CMA_STD) and the observed TSIS-1 Hybrid Solar Reference Spectrum (TSIS-1_HSRS). Results show that the CMA_STD SSI yields 4.45 Wm−2 less energy than the TSIS-1_HSRS, and systematically overestimate energy in the infrared bands and underestimate that in the visible bands. These discrepancies result in an annual regional mean DSSR underestimation of ~0.44 Wm−2, with localized underestimation for a particular month exceeding 2 Wm−2. The estimated solar power productions with the two SSIs differ by 0.25~0.32% and 0.36~0.52% of the total power production capacity for fixed-angle and solar tracking panels, respectively. These findings suggest that long-term and high-resolution spaceborne SSI observations are crucial to improve surface climate modelling, especially on local scales, and to service climate change mitigations. Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
Show Figures

Figure 1

Review

Jump to: Research

48 pages, 3194 KB  
Review
A Review and Comparative Analysis of Solar Tracking Systems
by Reza Sadeghi, Mattia Parenti, Samuele Memme, Marco Fossa and Stefano Morchio
Energies 2025, 18(10), 2553; https://doi.org/10.3390/en18102553 - 14 May 2025
Cited by 7 | Viewed by 8156
Abstract
This review provides a comprehensive and multidisciplinary overview of recent advancements in solar tracking systems (STSs) aimed at improving the efficiency and adaptability of photovoltaic (PV) technologies. The study systematically classifies solar trackers based on tracking axes (fixed, single-axis, and dual-axis), drive mechanisms [...] Read more.
This review provides a comprehensive and multidisciplinary overview of recent advancements in solar tracking systems (STSs) aimed at improving the efficiency and adaptability of photovoltaic (PV) technologies. The study systematically classifies solar trackers based on tracking axes (fixed, single-axis, and dual-axis), drive mechanisms (active, passive, semi-passive, manual, and chronological), and control strategies (open-loop, closed-loop, hybrid, and AI-based). Fixed-tilt PV systems serve as a baseline, with single-axis trackers achieving 20–35% higher energy yield, and dual-axis trackers offering energy gains ranging from 30% to 45% depending on geographic and climatic conditions. In particular, dual-axis systems outperform others in high-latitude and equatorial regions due to their ability to follow both azimuth and elevation angles throughout the year. Sensor technologies such as LDRs, UV sensors, and fiber-optic sensors are compared in terms of precision and environmental adaptability, while microcontroller platforms—including Arduino, ATmega, and PLC-based controllers—are evaluated for their scalability and application scope. Intelligent tracking systems, especially those leveraging machine learning and predictive analytics, demonstrate additional energy gains up to 7.83% under cloudy conditions compared to conventional algorithms. The review also emphasizes adaptive tracking strategies for backtracking, high-latitude conditions, and cloudy weather, alongside emerging applications in agrivoltaics, where solar tracking not only enhances energy capture but also improves shading control, crop productivity, and rainwater distribution. The findings underscore the importance of selecting appropriate tracking strategies based on site-specific factors, economic constraints, and climatic conditions, while highlighting the central role of solar tracking technologies in achieving greater solar penetration and supporting global sustainability goals, particularly SDG 7 (Affordable and Clean Energy) and SDG 13 (Climate Action). Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
Show Figures

Figure 1

Back to TopTop