energies-logo

Journal Browser

Journal Browser

Designing for Both Efficiency and Resilience: Harmonizing Energy, Comfort, and Climate Adaptation

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "B: Energy and Environment".

Deadline for manuscript submissions: 20 July 2026 | Viewed by 4067

Special Issue Editors


E-Mail Website
Guest Editor
School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Interests: building performance simulations; sustainable and resilient building design; post-occupancy evaluation; indoor environmental quality

E-Mail Website
Guest Editor
Department of Mechanical and Industrial Engineering, Liwa College, Abu Dhabi 41009, United Arab Emirates
Interests: heat transfer; computational fluid dynamics (CFD); microfluidic devices; energy systems modelling and optimization

Special Issue Information

Dear Colleagues,

As the built environment progresses, achieving greater energy efficiency and climate adaptation, balancing thermal resilience and energy efficiency is becoming increasingly important. While energy-efficient measures—such as airtight building envelopes, high-performance insulation, and demand-side energy management—can reduce operational energy use, they may also compromise a building’s ability to withstand extreme heatwaves, cold snaps, and power disruptions. For example, super-insulated and airtight buildings may be at risk of overheating during the summer months, while reliance on active cooling strategies can increase energy dependency and vulnerability during grid failures.

This Special Issue explores the synergies and trade-offs between energy efficiency and thermal resilience, aiming to identify design and operational strategies that optimize both. Building Performance Simulation (BPS) tools allow us to evaluate these interactions and develop integrated solutions that enhance comfort and survivability without compromising energy efficiency. Passive strategies, adaptive materials, thermal energy storage, and smart building controls can help mitigate conflicts, but their effectiveness is contingent on climate, occupancy behavior, and broader energy systems.

For this Special Issue, we are seeking original research, case studies, and review articles addressing (but not limited to) the following topics:

  • Trade-offs between energy-efficient design and thermal resilience, particularly in extreme weather conditions.
  • BPS applications for evaluating resilience–energy efficiency interactions in buildings.
  • Passive and active strategies that simultaneously enhance efficiency and resilience.
  • Risk of overheating in highly insulated, airtight buildings and mitigation approaches.
  • The role of thermal mass and phase change materials (PCMs) in balancing efficiency and resilience.
  • The use of thermal energy storage systems as a bridge between efficiency and resilience.
  • Smart, adaptive control systems that optimize energy performance while ensuring thermal safety.
  • The impact of urban heat islands (UHIs) on the resilience–efficiency balance in dense environments.
  • Building retrofitting strategies that improve resilience without energy penalties.
  • Regulatory, policy, and economic perspectives on balancing efficiency and resilience.

Our aim is to advance interdisciplinary knowledge on how architects, engineers, and policymakers can design and retrofit buildings that are both energy-efficient and resilient. By critically examining the potential contradictions and synergies, we hope to inform a new generation of climate-responsive and energy-conscious buildings.

Dr. Ahmed Saleem
Dr. Essam Abo-Zahhad
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermal resilience
  • building Performance Simulation (BPS)
  • passive and active thermal strategies
  • overheating risk mitigation
  • thermal energy storage
  • urban heat island (UHI) adaptation
  • climate-responsive building design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 15354 KB  
Article
Forecasting the Hygrothermal Condition of Partitions in a Thermally Modernized Historical Wooden Building—A Case Study
by Bożena Orlik-Kożdoń, Agnieszka Szymanowska-Gwiżdż and Elżbieta Rdzawska-Augustin
Energies 2025, 18(21), 5621; https://doi.org/10.3390/en18215621 - 26 Oct 2025
Viewed by 522
Abstract
The paper presents select in situ and numerical investigations related to improving the energy efficiency of historic buildings. Using the case study of a historic timber building as an example, the procedure of the in situ investigation of its existing condition is presented. [...] Read more.
The paper presents select in situ and numerical investigations related to improving the energy efficiency of historic buildings. Using the case study of a historic timber building as an example, the procedure of the in situ investigation of its existing condition is presented. This procedure included measuring the moisture of the timber elements, determining the presence of fungi, mold, and wood-destroying insects, infrared camera inspection, and measuring the microclimate of the rooms. According to the conclusions of the building survey report, conservation guidelines were proposed. On the basis of those proposed guidelines, thermal upgrades were suggested, including insulation on the inside of the envelope components. Detailed numerical calculations were provided for the proposed thermal insulation systems. Those included a hygrothermal performance evaluation in the context of the change in the moisture content of timber elements in the insulated envelope components. The risk of mold development on the surface of selected junctions was also estimated. The key outcome of this study is a proprietary procedure for improving the thermal protection quality of envelope components of historic timber buildings. Full article
Show Figures

Figure 1

24 pages, 4669 KB  
Article
User Comfort Evaluation in a Nearly Zero-Energy Housing Complex in Poland: Indoor and Outdoor Analysis
by Małgorzata Fedorczak-Cisak, Elżbieta Radziszewska-Zielina, Mirosław Dechnik, Aleksandra Buda-Chowaniec, Beata Sadowska, Michał Ciuła and Tomasz Kapecki
Energies 2025, 18(19), 5209; https://doi.org/10.3390/en18195209 - 30 Sep 2025
Viewed by 436
Abstract
The building sector plays a key role in the transition toward climate neutrality, with national regulations across the EU requiring the construction of nearly zero-energy buildings (nZEBs). However, while energy performance has been extensively studied, less attention has been given to the problem [...] Read more.
The building sector plays a key role in the transition toward climate neutrality, with national regulations across the EU requiring the construction of nearly zero-energy buildings (nZEBs). However, while energy performance has been extensively studied, less attention has been given to the problem of ensuring user comfort—both indoors and in the surrounding outdoor areas—under nZEB design constraints. This gap raises two key research objectives: (1) to evaluate whether a well-designed nZEB with extensive glazing maintains acceptable indoor thermal comfort and (2) to assess whether residents experience greater outdoor thermal comfort and satisfaction in small, sun-exposed private gardens or in larger, shaded communal green spaces. To address these objectives, a newly built residential estate near Kraków (Poland) was analyzed. The investigation included simulation-based assessments during the design phase and in situ measurements during building operation, complemented by a user survey on spatial preferences. Indoor comfort was evaluated for rooms with large glazed façades, as well as rooms with standard-sized windows, while outdoor comfort was assessed in both private gardens and a shared green courtyard. Results show that shading the southwest-oriented glazed façade with an overhanging terrace provided slightly lower temperatures in ground-floor rooms compared to rooms with standard unshaded windows. Outdoors, users experienced lower thermal comfort in small, unshaded gardens than in the larger, vegetated communal area (pocket park), which demonstrated greater capacity for temperature moderation and thermal stress reduction. Survey responses further indicate that potential future residents prefer the inclusion of a shared green–blue infrastructure area, even at the expense of building some housing units in semi-detached form, instead of maximizing the number of detached units with unshaded individual gardens. These findings emphasize the importance of addressing both indoor and outdoor comfort in residential nZEB design, showing that technological efficiency must be complemented by user-centered design strategies. This integrated approach can improve the well-being of residents while supporting climate change adaptation in the built environment. Full article
Show Figures

Figure 1

33 pages, 1580 KB  
Article
Selection and Classification of Small Wind Turbines for Local Energy Systems: Balancing Efficiency, Climate Conditions, and User Comfort
by Waldemar Moska, Leszek Piechowski and Andrzej Łebkowski
Energies 2025, 18(17), 4575; https://doi.org/10.3390/en18174575 - 28 Aug 2025
Viewed by 2574
Abstract
Micro and small wind turbines (MAWTs) are increasingly integrated into residential and prosumer hybrid energy systems. However, their real-world performance often falls short of catalog specifications due to mismatched wind resources, siting limitations, and insufficient attention to human comfort. This paper presents a [...] Read more.
Micro and small wind turbines (MAWTs) are increasingly integrated into residential and prosumer hybrid energy systems. However, their real-world performance often falls short of catalog specifications due to mismatched wind resources, siting limitations, and insufficient attention to human comfort. This paper presents a comprehensive decision-support framework for selecting the type and scale of MAWTs under actual local conditions. The energy assessment module combines aerodynamic performance scaling, wind speed-frequency modeling based on Weibull distributions, turbulence intensity adjustments, and component-level efficiency factors for both horizontal and vertical axis turbines. The framework addresses three key design objectives: efficiency—aligning turbine geometry and control strategies with local wind regimes to maximize energy yield; comfort—evaluating candidate designs for noise emissions, shadow flicker, and visual impact near buildings; and climate adaptation—linking turbine siting, hub height, and rotor type to terrain roughness, turbulence, and built environment characteristics. Case studies from low and moderate wind locations in Central Europe demonstrate how multi-criteria filtering avoids oversizing, improves the autonomy of hybrid PV–wind systems, and identifies configurations that may exceed permissible limits for noise or flicker. The proposed methodology enables evidence-based deployment of MAWTs in decentralized energy systems that balance technical performance, resilience, and occupant well-being. Full article
Show Figures

Figure 1

Back to TopTop