Metallurgy-Processing-Properties Relationship of Metallic Materials

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Crystalline Metals and Alloys".

Deadline for manuscript submissions: 15 October 2025 | Viewed by 1032

Special Issue Editor

Key Laboratory for Ecological Metallurgy of Multimetallic Minerals (Ministry of Education), Northeastern University, Shenyang 110819, China
Interests: alloy design; urban mining; recycling; circular economy; thermodynamics; CALPHAD; metallurgical slag
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is our pleasure to announce the upcoming Special Issue titled “Metallurgy-Processing-Properties Relationship of Metallic Materials” in the esteemed journal of Crystals. The intricate interplay between metallurgical processes and the resultant properties of metallic materials are crucial for innovations across a broad spectrum of industries.

Recent technological advancements and research have increasingly focused on how metallurgical processes influence the microstructure and properties of materials. This Special Issue aims to capture cutting-edge developments in the understanding of phase transformations, mechanical properties, and the design and optimization of new alloys. It will cover a variety of topics including innovative metallurgical techniques, advances in processing methods, and the consequent enhancements in material properties that these methods facilitate.

We invite contributions from scientists and engineers in fields such as materials science, mechanical engineering, and industrial chemistry, among others. This Special Issue seeks original research articles and reviews that provide new insights into the theoretical and practical aspects of metallurgy.

Research areas may include (but are not limited to) the following:

  • Innovations in alloy development;
  • Impact of processing on microstructural characteristics;
  • Advances in mechanical testing and characterization techniques;
  • Phase transformation and phase diagram of metallic and slag systems;
  • Theoretical modeling and simulation of metallurgical processes;
  • Case studies on the application of processed metallic materials in various industries.

We look forward to your insightful contributions to deepen the understanding of the metallurgy-processing-properties relationship in metallic materials.

Dr. Junjie Shi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metallurgy
  • phase transformation
  • phase diagram
  • material processing
  • alloy development
  • mechanical properties
  • microstructural analysis
  • simulation
  • characterization techniques

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 10863 KB  
Article
Pinless Friction Stir Spot Welding of Pure Copper: Process, Microstructure, and Mechanical Properties
by Xu Zhang, Xiaole Ge, Igor Kolupaev, Zhuangzhuang Shan and Hongfeng Wang
Crystals 2025, 15(9), 804; https://doi.org/10.3390/cryst15090804 - 12 Sep 2025
Viewed by 28
Abstract
Pure copper joints (PCJs) were fabricated using pinless friction stir spot welding (P-FSSW), a solid-state welding technique, to investigate the influence of plunge depth, rotational speed, and dwell time on PCJ performance. Thermal cycles under different welding parameters were recorded, while the microstructure [...] Read more.
Pure copper joints (PCJs) were fabricated using pinless friction stir spot welding (P-FSSW), a solid-state welding technique, to investigate the influence of plunge depth, rotational speed, and dwell time on PCJ performance. Thermal cycles under different welding parameters were recorded, while the microstructure at various locations within the welded zone was characterized using electron backscatter diffraction (EBSD). The microhardness and tensile–shear force (T-SF) of the PCJs were evaluated, and the fracture types together with fracture evolution were analyzed. The experimental results reveal that, under the combined effect of thermal cycles and mechanical stirring, subgrains in the welded zone transformed into recrystallized grains, whereas intense material flow contributed to an increased fraction of deformed grains. At the Hook region and the interface between the upper and lower sheets, grains were tightly bonded, resulting in effective metallurgical joining. Higher microhardness values were observed in the stir zone (SZ), whereas lower values appeared in the heat-affected zone beneath the interface. With increasing plunge depth, rotational speed, and dwell time, the T-SF of the PCJs first increased and then decreased, achieving a relatively high value at a plunge depth of 0.4 mm, a rotational speed of 1500 rpm, and a dwell time of 9 s. The fracture types of the PCJs were shear fracture and plug fracture, with the Hook region identified as the weakest zone. Full article
(This article belongs to the Special Issue Metallurgy-Processing-Properties Relationship of Metallic Materials)
Show Figures

Figure 1

24 pages, 12808 KB  
Article
Influence of Homogenization Heat Treatments on the Mechanical, Structural, Biodegradation, and Cavitation Behavior of Some Alloys in the ZnMg(Fe) System
by Brandușa Ghiban, Ilare Bordeasu, Aurora Antoniac, Iulian Antoniac, Cristina Maria Gheorghe, Dorin Bordeasu, Lavinia Madalina Micu, Cristian Ghera, Laura Cornelia Salcianu, Bogdan Florea, Daniel Ostoia and Anca Maria Fratila
Crystals 2025, 15(5), 458; https://doi.org/10.3390/cryst15050458 - 14 May 2025
Viewed by 514
Abstract
This paper presents the biodegradation and cavitational erosion behavior of new zinc alloys in the ZnMgFe system. The alloys were heat-treated through homogenization at 300 °C and 400 °C, with maintenance times of 5 and 10 h each. The experimental research consisted of [...] Read more.
This paper presents the biodegradation and cavitational erosion behavior of new zinc alloys in the ZnMgFe system. The alloys were heat-treated through homogenization at 300 °C and 400 °C, with maintenance times of 5 and 10 h each. The experimental research consisted of characterizing the structure and mechanical properties of the newly made alloys in different structural states, as well as determining their biodegradation and cavitation behavior. Biodegradability was achieved using laboratory tests in SBF, with different immersion durations (3, 7, 14, 21, or 35 days). The cavitation behavior was assessed by performing tests on a piezoceramic crystal vibrator in compliance with ASTM G32-2016, thus constructing the curves of the erosion velocity MDER(t) and the cumulative average erosion depth MDE(t). The analyses performed on the mechanical properties, microscopic images, and the cavitation parameters MDER and MDEmax (results at the end of the cavitation attack) showed the effect of the heat treatments on the structure and structural resistance to cyclic loadings of the cavitation. The double alloying of zinc with magnesium and iron may increase either the mechanical properties or the corrosion resistance to cavitation and can control the biodegradability of the resulting ZnMgFe alloy. The best heat treatment for improving these properties is homogenization at 400 °C/10 h, which may increase the cavitation erosion of zinc by up to seven times. The experimental results demonstrate that the new alloys from the ZnMgFe system are a good option for manufacturing biodegradable implants with functional in vitro properties. Full article
(This article belongs to the Special Issue Metallurgy-Processing-Properties Relationship of Metallic Materials)
Show Figures

Figure 1

Back to TopTop