Pinless Friction Stir Spot Welding of Pure Copper: Process, Microstructure, and Mechanical Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermal Cycle
3.2. Macromorphology
3.3. Microstructure
3.4. Microhardness
3.5. Tensile–Shear Force
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FSSW | Friction stir spot welding |
| P-FSSW | Pinless friction stir spot welding |
| PCJ | Pure copper joint |
| EBSD | Electron backscatter diffraction |
| T-SF | Tensile–shear force |
| SZ | Stir zone |
| PD | Plunge depth |
| RS | Rotational speed |
| DT | Dwell time |
| PR | Plunge rate |
| US | Upper sheet |
| LS | Lower sheet |
| BM | Base material |
| KAM | Kernel Average Misorientation |
References
- Palanivel, R. A contemporary review of the advancements in joining technologies for battery applications. Mater. Technol. 2023, 57, 275–281. [Google Scholar] [CrossRef]
- Sampaio, R.F.V.; Pragana, J.P.M.; Bragança, I.M.F.; Silva, C.M.A.; Martins, P.A.F. Thermo-electrical performance of hybrid busbars: An experimental and numerical investigation. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 237, 70–80. [Google Scholar] [CrossRef]
- Ólafsson, D.; Vilaça, P.; Vesanko, J. Multiphysical characterization of FSW of aluminum electrical busbars with copper ends. Weld. World 2020, 64, 59–71. [Google Scholar] [CrossRef]
- Beygi, R.; Carbas, R.J.C.; Marques, E.A.S.; Barbosa, A.Q.; Kasaei, M.M.; da Silva, L.F.M. Mechanism of toughness enhancement of brittle fracture by intermittent η-intermetallic in Al/Cu joint made by FSW. Mat. Sci. Eng. A 2024, 890, 145907. [Google Scholar] [CrossRef]
- Ge, X.; Kolupaev, I.N.; Jiang, D.; Song, W.; Wang, H. Influence of rotational speed on the microstructure and mechanical properties of refill friction stir spot welded pure copper. Crystals 2025, 15, 268. [Google Scholar] [CrossRef]
- Özgül, H.G.; Dedeoğlu, O. Investigations of the mechanical and microstructural effects of pinless tool geometry on friction stir spot welding process. Trans. Indian Inst. Met. 2020, 73, 2281–2289. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, S.; Zhang, C.; Chen, Z.; Zhang, J.; Fei, L.; Dong, P. Microstructure and mechanical properties of probeless friction stir extrusion joined joints of 6061-T6 aluminum alloy to Q235 steel. Int. J. Adv. Manuf. Tech. 2022, 119, 3029–3043. [Google Scholar] [CrossRef]
- Dell’Avvocato, G.; Rashkovets, M.; Mancini, E.; Contuzzi, N.; Casalino, G.; Palumbo, D.; Galietti, U. Innovative non-destructive thermographic evaluation of mechanical properties in dissimilar aluminium probeless friction stir spot welded (P-FSSW) joints. Eng. Fail. Anal. 2025, 177, 109675. [Google Scholar] [CrossRef]
- Mehrez, S.; Paidar, M.; Cooke, K.; Vignesh, R.V.; Ojo, O.O.; Babaei, B. A comparative study on weld characteristics of AA5083-H112 to AA6061-T6 sheets produced by MFSC and FSSW processes. Vacuum 2021, 190, 110298. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Sun, Y.; Liu, Q. On the fatigue resistance assessment of friction stir welded joints affected by heat input. Eng. Fail. Anal. 2024, 161, 108262. [Google Scholar] [CrossRef]
- Casalino, G. Recent achievements in rotary, linear and friction stir welding of metals alloys. Metals 2020, 10, 80. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Zhang, Z.; Gao, D.; Wang, W.; Dong, C. Improving mechanical properties of pinless friction stir spot welded joints by eliminating hook defect. Mater. Des. (1980–2015) 2014, 62, 247–254. [Google Scholar] [CrossRef]
- Alaeibehmand, S.; Mirsalehi, S.E.; Ranjbarnodeh, E. Pinless FSSW of DP600/Zn/AA6061 dissimilar joints. J. Mater. Res. Technol. 2021, 15, 996–1006. [Google Scholar] [CrossRef]
- Bakavos, D.; Prangnell, P.B. Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet. Sci. Technol. Weld. Join. 2009, 14, 443–456. [Google Scholar] [CrossRef]
- Bakavos, D.; Chen, Y.; Babout, L.; Prangnell, P. Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet. Metall. Mater. Trans. A 2011, 42, 1266–1282. [Google Scholar] [CrossRef]
- Tozaki, Y.; Uematsu, Y.; Tokaji, K. A newly developed tool without probe for friction stir spot welding and its performance. J. Mater. Process. Technol. 2010, 210, 844–851. [Google Scholar] [CrossRef]
- Gülçimen Çakan, B.; Tunçel, O.; Tutar, M. Friction stir spot weldability of AA7075-T6 sheets with a pinless tool providing enhanced stirring effect. JOM 2025, 77, 389–399. [Google Scholar] [CrossRef]
- Yu, G.; Chen, X.; Zitao, W.; Zhang, G.; Chen, Y. Effect of tool groove features on the microstructure and tensile-shear mechanical performances of probeless friction stir spot welds. Int. J. Adv. Manuf. Tech. 2022, 121, 1837–1850. [Google Scholar] [CrossRef]
- Fan, W.; Yang, X.; Su, Y.; Ma, T.; Chu, Q.; Xu, H.; Guo, Z.; Ma, S.; Meng, T.; Li, W. Investigation of material flow mechanisms and interface bonding in probeless friction stir spot welding of 2198-T8 aluminum-lithium alloy. Mater. Charact. 2025, 227, 115266. [Google Scholar] [CrossRef]
- Rashkovets, M.; Contuzzi, N.; Casalino, G. Modeling of probeless friction stir spot welding of AA2024/AISI304 steel lap joint. Materials 2022, 15, 8205. [Google Scholar] [CrossRef]
- Tognoli, E.; Schricker, K.; Bassoli, E.; Bergmann, J.P. Influence of the eutectic interface on the fatigue behaviour of friction stir spot welds of aluminum with copper. Int. J. Fatigue 2025, 194, 108834. [Google Scholar] [CrossRef]
- Vaneghi, A.H.; Bagheri, B.; Shamsipur, A.; Mirsalehi, S.E.; Abdollahzadeh, A. Investigations into the formation of intermetallic compounds during pinless friction stir spot welding of AA2024-Zn-pure copper dissimilar joints. Weld. World 2022, 66, 2351–2369. [Google Scholar] [CrossRef]
- Rashkovets, M.; Dell’Avvocato, G.; Contuzzi, N.; Palumbo, D.; Galietti, U.; Casalino, G. On the role of rotational speed in P-FSSW dissimilar aluminum alloys lap weld. Weld. World 2025, 69, 2095–2107. [Google Scholar] [CrossRef]
- Li, T.; Ding, H.; Li, R.; Qi, K.; Liu, Z.; Zhang, X.; Zhao, Y.; Qiao, L. Hole inhibition mechanisms of Mg/Steel lap joint by pinless friction stir spot welding. J. Iron. Steel Res. Int. 2025, 32, 1085–1101. [Google Scholar] [CrossRef]
- Li, T.; Xie, X.; Xu, J.; Li, R.; Qi, K.; Zhang, X.; Yue, H.; Zhao, Y.; Qiao, L. Research on AZ31 Mg alloy/22MnB5 steel pinless friction stir spot welding process and interfacial temperature field simulation. J. Mater. Res. Technol. 2023, 26, 3710–3725. [Google Scholar] [CrossRef]
- Ge, X.; Kolupaev, I.N.; Jiang, D.; Wang, H. Investigation on the welded joint properties of pinless friction stir spot welding of copper under different tool grooves. Ferroelectrics 2024, 618, 2339–2354. [Google Scholar] [CrossRef]
- Suryanarayanan, R.; Sridhar, V. Process parameter optimisation in pinless friction stir spot welding of dissimilar aluminium alloys using multi-start algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4101–4115. [Google Scholar] [CrossRef]
- Meng, T.; Yang, X.; Su, Y.; Ma, S.; Xu, H.; Guo, Z.; Ma, T.; Li, W. Formation mechanism and failure behavior in synergistic double-sided probeless friction stir spot welded joints of 6061 aluminum alloy. Mater. Charact. 2025, 219, 114631. [Google Scholar] [CrossRef]
- Li, W.Y.; Chu, Q.; Yang, X.W.; Shen, J.J.; Vairis, A.; Wang, W.B. Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy. J. Mater. Process. Technol. 2018, 252, 69–80. [Google Scholar] [CrossRef]
- Li, G.H.; Zhou, L.; Luo, S.F.; Dong, F.B.; Guo, N. Quality improvement of bobbin tool friction stir welds in Mg-Zn-Zr alloy by adjusting tool geometry. J. Mater. Process. Technol. 2020, 282, 116685. [Google Scholar] [CrossRef]
- Fan, W.; Chu, Q.; Yang, X.; Li, W.; Zou, Y.; Hao, S. Microstructure and mechanical properties of probeless friction stir spot welded Al-Li alloy joints via fast electric pulse treatment: A comparative study. Mater. Charact. 2023, 205, 113276. [Google Scholar] [CrossRef]
- Zhou, G.; Huang, T.; Su, L.; Huang, Q.; Wu, S.; Zhang, B. The microstructure and mechanical properties of deposited alcusc alloy wall structures fabricated by WAAM with FSP assistance. Thin-Walled Struct. 2025, 209, 112954. [Google Scholar] [CrossRef]
- Sun, Q.; Di, H.S.; Li, J.C.; Wu, B.Q.; Misra, R.D.K. A comparative study of the microstructure and properties of 800Mpa microalloyed C-Mn steel welded joints by laser and gas metal arc welding. Mat. Sci. Eng. A 2016, 669, 150–158. [Google Scholar] [CrossRef]
- Choi, I.; Kim, Y.; Wang, Y.M.; Ramamurty, U.; Jang, J. Nanoindentation behavior of nanotwinned Cu: Influence of indenter angle on hardness, strain rate sensitivity and activation volume. Acta Mater. 2013, 61, 7313–7323. [Google Scholar] [CrossRef]
- Yu, G.; Chen, X.; Wu, Z.; Chen, Y.; Zhang, G. Analysis of microstructure and mechanical properties of probeless friction stir spot welding joint in AA6061-T6 aluminum thin plate. J. Jilin Univ. (Eng. Technol. Ed.) 2023, 53, 1338–1344. [Google Scholar] [CrossRef]
- Cao, J.Y.; Wang, M.; Kong, L.; Guo, L.J. Hook formation and mechanical properties of friction spot welding in alloy 6061-T6. J. Mater. Process. Technol. 2016, 230, 254–262. [Google Scholar] [CrossRef]
- Silva, B.H.; Zepon, G.; Bolfarini, C.; dos Santos, J.F. Refill friction stir spot welding of AA6082-T6 alloy: Hook defect formation and its influence on the mechanical properties and fracture behavior. Mat. Sci. Eng. A 2020, 773, 138724. [Google Scholar] [CrossRef]
- Xu, R.Z.; Ni, D.R.; Yang, Q.; Liu, C.Z.; Ma, Z.Y. Pinless friction stir spot welding of Mg–3Al–1Zn alloy with Zn interlayer. J. Mater. Sci. Technol. 2016, 32, 76–88. [Google Scholar] [CrossRef]
- Wang, X.; Ahn, J.; Kaboglu, C.; Yu, L.; Blackman, B.R.K. Characterisation of composite-titanium alloy hybrid joints using digital image correlation. Compos. Struct. 2016, 140, 702–711. [Google Scholar] [CrossRef]
- Plaine, A.H.; Suhuddin, U.F.H.; Alcântara, N.G.; dos Santos, J.F. Microstructure and mechanical behavior of friction spot welded AA6181-T4/Ti6Al4V dissimilar joints. Int. J. Adv. Manuf. Tech. 2017, 92, 3703–3714. [Google Scholar] [CrossRef]
- Rosendo, T.; Tier, M.; Mazzaferro, J.; Mazzaferro, C.; Strohaecker, T.R.; Dos Santos, J.F. Mechanical performance of AA6181 refill friction spot welds under lap shear tensile loading. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 1443–1455. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P.; Jiang, H.; Yang, K.; Wu, X.; Meng, Q.; Ji, S. Mechanical properties and fracture behavior of the refill friction stir spot welding dissimilar aluminum alloy joints. Trans. Indian Inst. Met. 2024, 77, 3821–3828. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, J.; Xing, Y.; Yang, F.; Zhang, X.; Xia, P.; Ma, X. Experimental and numerical investigation of a novel pinless friction stir spot welding for Al 1060 sheets. Int. J. Adv. Manuf. Tech. 2024, 134, 2537–2546. [Google Scholar] [CrossRef]










| Cu + Ag | Sb | As | Bi | S | Pb | Fe | Bal |
|---|---|---|---|---|---|---|---|
| 99.90 | 0.002 | 0.002 | 0.001 | 0.005 | 0.005 | 0.005 | 0.08 |
| No. | PD (mm) | RS (rpm) | DT (s) |
|---|---|---|---|
| 1 | 0.2 | 1100 | 5 |
| 2 | 0.3 | 1100 | 5 |
| 3 | 0.4 | 1100 | 5 |
| 4 | 0.5 | 1100 | 5 |
| 5 | 0.3 | 900 | 5 |
| 6 | 0.3 | 1300 | 5 |
| 7 | 0.3 | 1500 | 5 |
| 8 | 0.3 | 1700 | 5 |
| 9 | 0.3 | 1100 | 3 |
| 10 | 0.3 | 1100 | 7 |
| 11 | 0.3 | 1100 | 9 |
| 12 | 0.3 | 1100 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ge, X.; Kolupaev, I.; Shan, Z.; Wang, H. Pinless Friction Stir Spot Welding of Pure Copper: Process, Microstructure, and Mechanical Properties. Crystals 2025, 15, 804. https://doi.org/10.3390/cryst15090804
Zhang X, Ge X, Kolupaev I, Shan Z, Wang H. Pinless Friction Stir Spot Welding of Pure Copper: Process, Microstructure, and Mechanical Properties. Crystals. 2025; 15(9):804. https://doi.org/10.3390/cryst15090804
Chicago/Turabian StyleZhang, Xu, Xiaole Ge, Igor Kolupaev, Zhuangzhuang Shan, and Hongfeng Wang. 2025. "Pinless Friction Stir Spot Welding of Pure Copper: Process, Microstructure, and Mechanical Properties" Crystals 15, no. 9: 804. https://doi.org/10.3390/cryst15090804
APA StyleZhang, X., Ge, X., Kolupaev, I., Shan, Z., & Wang, H. (2025). Pinless Friction Stir Spot Welding of Pure Copper: Process, Microstructure, and Mechanical Properties. Crystals, 15(9), 804. https://doi.org/10.3390/cryst15090804

