Surface Chemistry in Science and Industry

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Liquid–Fluid Coatings, Surfaces and Interfaces".

Deadline for manuscript submissions: 15 July 2026 | Viewed by 621

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, The University of Shumen “Episkop Konstantin Preslavski”, 9700 Shumen, Bulgaria
Interests: surface phenomena; ion-specific effects in dispersed systems; physical chemistry of surfactants adsorption layers; surface chemistry in the mineral processing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Special Issue “Surface Chemistry in Science and Industry” stresses the vital role of surface chemistry in various systems and industrial processes. For example, the properties of gas and oil emulsions, foams, suspensions, aerosols, soft dispersed systems, and macro-molecular solutions are controlled by the interactions between the particles of the dispersed phase, and these interactions are controlled by the surface chemistry. The main questions are as follows: How to manipulate surface chemistry to tailor the properties of dispersed systems? Another important application of surface chemistry is the modification of the surfaces, thus affecting their properties. How to tailor the properties of surfaces in accordance with our wishes? How to make them super-hydrophobic or super-hydrophilic, or give them bactericide properties, or to make them functional or smart surfaces? The answer is in smart surface chemistry.

    The issue is not limited to, but welcomes papers from the following fields:

  1. Ion-specific effects on the dispersed systems: gas and oil emulsions, foams, solid and soft suspensions, and macromolecular solutions.
  2. Surfactant adsorption layers and interaction between surfactants.
  3. Surface chemistry in thin liquid films.
  4. Bio-surfaces and the interactions between them.
  5. DFT studies on the interaction between the molecules of the surface in aqueous medium and different chemical agents.
  6. Industrial applications based on the surface chemistry manipulation in the mineral processing, oil industry, pharmacy, and medicine.
  7. Fabrication of surfaces with a specific usage.
  8. Waste water treatment and new purification techniques based on eco-friendly chemical treatment of the waste chemicals and particles.

Prof. Dr. Stoyan Karakashev
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface chemistry
  • functional films
  • functional coatings
  • dispersed systems
  • ion-specific effects
  • flotation
  • superhydrophobic
  • superhydrophilic

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 785 KB  
Article
Exploring the Mechanical and Thermal Properties of BaTiS3 and BaTiSe3 Chalcogenides via Density Functional Theory
by Adel Bandar Alruqi and Nicholas O. Ongwen
Coatings 2025, 15(12), 1479; https://doi.org/10.3390/coatings15121479 - 15 Dec 2025
Viewed by 134
Abstract
The exploration of chalcogenides is on the rise owing to their desirable optical, electronic, thermoelectric, and thermal properties. Chalcogenide materials have been investigated for possible applications in areas such as non-linear optics and solar cells. Among these materials are BaTiS3 and BaTiSe [...] Read more.
The exploration of chalcogenides is on the rise owing to their desirable optical, electronic, thermoelectric, and thermal properties. Chalcogenide materials have been investigated for possible applications in areas such as non-linear optics and solar cells. Among these materials are BaTiS3 and BaTiSe3. BaTiS3 has shown promise in the above-mentioned applications due to its low thermal conductivity. However, neither the thermal properties of BaTiSe3 nor the mechanical properties of both BaTiS3 and BaTiSe3 have been reported. In this work, we performed a computational study of the mechanical and thermal properties of both materials within the density functional theory using Quantum Espresso and BoltzTrap2 codes, employing generalized gradient approximation. The results showed that the computed thermal conductivity of BaTiS3 at 0.43 W/m/K is comparable to the literature values. The computed elastic constants of BaTiS3 (bulk modulus of 44.7 GPa, shear modulus of 11.2 GPa, Young’s modulus of 29.6 GPa, and Vickers hardness of 1.053 GPa) were higher than those of BaTiSe3. The calculated properties obtained in this work add to the literature on the properties of BaTiS3 and BaTiSe3. However, since the work was computational, the results can be verified by an experimental investigation. Full article
(This article belongs to the Special Issue Surface Chemistry in Science and Industry)
Show Figures

Figure 1

18 pages, 4834 KB  
Article
Synergistic Dust Removal Mechanisms in a Wet String Grid: Insights from Eulerian–Lagrangian Simulations of Turbulent Gas–Droplet–Particle Flow
by Hua Guo, Jinchen Yang, Wushen Qi and Nan He
Coatings 2025, 15(12), 1440; https://doi.org/10.3390/coatings15121440 - 7 Dec 2025
Viewed by 318
Abstract
This study proposes a model for a wet string grid dust removal system based on gas–droplet–particle turbulent Eulerian–Lagrangian simulation, providing in-depth insights into the dust removal mechanism of droplet groups and its impact on dust collection efficiency. Through numerical simulations and theoretical derivation, [...] Read more.
This study proposes a model for a wet string grid dust removal system based on gas–droplet–particle turbulent Eulerian–Lagrangian simulation, providing in-depth insights into the dust removal mechanism of droplet groups and its impact on dust collection efficiency. Through numerical simulations and theoretical derivation, we systematically introduce the mathematical expression of the droplet group dust removal efficiency and validate its applicability in wet string grid dust removal processes. The study reveals that the dust removal efficiency of the wet string grid system is influenced by multiple factors, including airflow velocity, droplet distribution, and the interaction between droplets and dust particles. By adjusting spray volume, wind speed, and the geometric parameters of the water mist zone, the dust removal process was optimized. The results show that increasing the wind speed enhances dust removal efficiency, but excessive wind speed reduces the dust capture efficiency of droplets. Additionally, based on simulation results of the flow field, the study identifies key factors influencing the dust removal efficiency of droplet groups and provides valuable insights for optimizing wet string grid dust removal systems in practical engineering. Full article
(This article belongs to the Special Issue Surface Chemistry in Science and Industry)
Show Figures

Figure 1

Back to TopTop