Nanotechnology in Catalysis

A topical collection in Catalysts (ISSN 2073-4344). This collection belongs to the section "Nanostructured Catalysts".

Viewed by 856

Editor


E-Mail Website
Collection Editor
Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. Los Naranjos s/n, E-46022 Valencia, Spain
Interests: catalysis; materials; redox chemistry; one-pot; fine chemistry; CO2 valorization
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

The evolution of catalysis is associated to the development of nanoscience and nanotechnology, which has the potential to design, synthesize and control catalysts at nanometer and sub-nanometer scales. The enormous efficiency of these nanocatalysts has to do with (a) the increasing surface-to-volume ratio with decreasing particle size and (b) quantum confinement effects, which can influence the chemical features of sufficiently small particles. Other atomic characteristics such as chemical composition will be also critical to achieve a benefit at the level of catalytic activity and selectivity. 

Taking into account that synthetic heterogeneous catalysts are the basis of industrial chemistry, this Topic Collection will collect fundamental research in heterogeneous catalysis. In particular, we invite papers on the design, preparation and characterization of nanocatalysts (nanoparticles and nanoclusters) for clean energy research (ranging from hydrogen and liquid fuel production from fossil and renewable resources to clean combustion technologies), nanocatalysis for environmental chemistry and nanocatalysis for clean processes (i.e., fine chemistry and large-scale industrial applications).

Dr. Maria J. Sabater
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocatalyst
  • nanoclusters
  • nanoparticles
  • active site
  • design
  • selectivity
  • energy
  • environment
  • fine chemistry
  • large scale production

Published Papers (1 paper)

2025

24 pages, 5828 KiB  
Article
Aluminum Microspheres Coated with Copper and Nickel Nanoparticles: Catalytic Activity in the Combustion of Ammonium Perchlorate
by Yi Wang and Xiaolan Song
Catalysts 2025, 15(4), 354; https://doi.org/10.3390/catal15040354 - 4 Apr 2025
Viewed by 450
Abstract
This study employed an in-situ displacement technique to eliminate the oxide layer present on the surface of micron aluminum (μAl). Utilizing the exposed metallic aluminum, we facilitated the displacement of copper and nickel nanoparticles. These nanoparticles, approximately 90 nanometers in size, were densely [...] Read more.
This study employed an in-situ displacement technique to eliminate the oxide layer present on the surface of micron aluminum (μAl). Utilizing the exposed metallic aluminum, we facilitated the displacement of copper and nickel nanoparticles. These nanoparticles, approximately 90 nanometers in size, were densely adhered to the surface of the μAl particles. The elemental composition and structural characteristics of the composite particles were meticulously analyzed using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS), Vibrating Sample Magnetometry (VSM), and X-Ray Photoelectron Spectroscopy (XPS). Subsequently, thermal analysis and combustion performance assessments were conducted to elucidate the catalytic effects of the composite particles ([nCu+nNi]/μAl) on the thermal decomposition and combustion efficiency of ammonium perchlorate (AP). The results elucidate that the nanoparticles immobilized on the surface of μAl are unequivocally metallic copper (nCu) and metallic nickel (nNi). Following the application of nCu and nNi, the oxidation reaction of μAl accelerated by nearly 400 °C; furthermore, the incorporation of [nCu+nNi]/μAl raised the thermal decomposition peak temperature of AP by approximately 130 °C. Notably, the thermal decomposition activation energy of raw AP reached as high as 241.7 kJ/mol; however, upon doping with [nCu+nNi]/μAl, this activation energy significantly diminished to 161.4 kJ/mol. The findings of the combustion experiments revealed that both the raw AP and the AP modified solely with μAl were impervious to ignition via the hot wire method. In contrast, the AP doped with [nCu+nNi]/μAl demonstrated pronounced combustion characteristics, achieving an impressive peak flame temperature of 1851 °C. These results substantiate that the nCu and nNi, when deposited on the surface of μAl, not only facilitate the oxidation and combustion of μAl but also significantly enhance the thermal decomposition and combustion dynamics of ammonium perchlorate. Consequently, the [nCu+nNi]/μAl composite shows considerable promise for application in high-burn-rate hydroxyl-terminated polybutadiene (HTPB) propellants. Full article
Show Figures

Figure 1

Back to TopTop