Trends and Perspective of Advanced Nanotechnology for Bio-Sensing, Imaging and Cancer Therapy

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensor and Bioelectronic Devices".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 8587

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Interests: cancer diagnostic technique; disease diagnostic biosensor; in vivo fluorescence/nuclear magnetic imaging; cancer multifunctional therapy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Interests: microfluidic; lab on a chip; disease diagnostic biosensor; cancer diagnostic technique
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanotechnology has become a game changer, providing innovative solutions to address the pressing challenges in bio-sensing, imaging, and cancer therapy. Nanotechnology, particularly bio-nanotechnology, employs specific identification, precise labelling, flexible imaging, and effective therapeutic capabilities. They can be combined with physicochemical sensors and micro/nano tools to provide user-friendly diagnostic and medical treatments systems, with an ever-expanding range of applications to improve people’s health, well-being, and the environment. In addition, the development of advanced bio-responsive nanomaterial-based diagnostic/therapeutic probes has enabled precise target bioimaging and smart nano-medicine. Moreover, combination with machine learning and artificial intelligence (AI) has enabled the effective use of bio-nanotechnology for the rapid and accurate diagnosis and effective treatment of malignant tumours, neurodegenerative diseases, and other difficult-to-treat diseases.

This Special Issue invites researchers and practitioners to submit original research papers and review articles on advanced nanotechnology use in biosensing, imaging, and cancer therapy. We look forward to applications, including, but not limited to, smart materials, microfluidic chips, single/dual/multimodality imaging, artificial intelligence (AI), tumor photothermal/photodynamic therapy, tumor gene therapy, tumor immunotherapy, and so on.

Prof. Dr. Xuemei Wang
Dr. Xiaohui Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced nanotechnology
  • biosensing
  • multimodal imaging probes
  • dual-modality/multimodality imaging
  • artificial intelligence (AI)
  • diagnostic/therapeutic probes
  • tumor gene/immunotherapy
  • microfluidic chip

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1517 KiB  
Article
Anti-Adalimumab Antibodies Purified from Juvenile Idiopathic Arthritis Patients: Kinetic Characterization Among Biosimilars
by Andrea Di Santo, Edoardo Marrani, Carmen Gallo, Fosca Errante, Valerio Maniscalco, Anna Maria Papini, Gabriele Simonini, Paolo Rovero and Feliciana Real Fernandez
Biosensors 2025, 15(5), 278; https://doi.org/10.3390/bios15050278 - 29 Apr 2025
Abstract
The use of adalimumab biosimilars has become increasingly common in clinical practice, reflecting their growing acceptance and efficacy as therapeutic alternatives to reference biologics. However, studies investigating the molecular interactions between anti-adalimumab antibodies (AAA) elicited in patients and different adalimumab biosimilars remain limited. [...] Read more.
The use of adalimumab biosimilars has become increasingly common in clinical practice, reflecting their growing acceptance and efficacy as therapeutic alternatives to reference biologics. However, studies investigating the molecular interactions between anti-adalimumab antibodies (AAA) elicited in patients and different adalimumab biosimilars remain limited. This study aims to characterize the kinetic interactions between purified AAA from pediatric patients with Juvenile Idiopathic Arthritis and three adalimumab formulations: the originator Humira®, and the biosimilars GP2017 (Hyrimoz®) and SB5 (Imraldi®). For this purpose, adalimumab formulations were immobilized on a gold chip, and purified AAA were flowed to perform further kinetic analysis using the surface plasmon resonance (SPR) technology. Results showed that the KD values for purified AAA from patients treated with biosimilars GP2017 (Hyrimoz®) or SB5 (Imraldi®) were comparable across all formulations tested, including the originator Humira®. AAA interacted with Humira®, Hyrimoz®, and Imraldi® with similar apparent affinity (10−9 M > KD > 10−10 M); slight variations have been observed among patients, less among biosimilars. The similarity in KD values across biosimilars and the originator supports the notion that, at the level of immunogenicity, biosimilars can be considered clinically comparable to the originator. Full article
Show Figures

Figure 1

15 pages, 3020 KiB  
Article
Multi-Channel Cellytics for Rapid and Cost-Effective Monitoring of Leukocyte Activation
by Hojin Cheon, Samir Kumar, Inha Lee, Sanghoon Shin, Hyeji Jang, Young-Sun Lee, Myung-Hyun Nam, Hyun Sik Jun and Sungkyu Seo
Biosensors 2025, 15(3), 143; https://doi.org/10.3390/bios15030143 - 24 Feb 2025
Viewed by 516
Abstract
Morphological changes in leukocytes are valuable markers for diseases and immune responses. In our earlier work, we presented Cellytics, a device that uses lens-free shadow imaging technology (LSIT) to monitor natural killer cell activity. Here, we present an improved Cellytics system that has [...] Read more.
Morphological changes in leukocytes are valuable markers for diseases and immune responses. In our earlier work, we presented Cellytics, a device that uses lens-free shadow imaging technology (LSIT) to monitor natural killer cell activity. Here, we present an improved Cellytics system that has been upgraded to a four-channel configuration to achieve higher throughput while maintaining robust reproducibility for rapid and cost-effective leukocyte analysis. The performance of this multi-channel Cellytics system was improved through refinements to the micro-pinhole chip. Etched pinholes provided better image resolution and clarity compared to drilled pinholes. To stimulate leukocytes, we used an activation stimulator cocktail (ASC) and quantified the resulting morphological changes using shadow-based metrics, including peak-to-peak distance (PPD) and maxima-to-minima standard deviation (MMD-SD). In addition, we developed a new leukocyte activation parameter (LAP) to specifically assess these activation-induced morphological changes. After ASC stimulation, leukocytes showed significantly increased PPD and LAP values and decreased MMD-SD compared to non-activated leukocytes. These results are consistent with the results of the flow cytometric analysis. These results emphasize the potential of Cellytics for the rapid and accurate assessment of leukocyte activation and provide a valuable tool for both clinical diagnostics and basic immunological research. Full article
Show Figures

Figure 1

15 pages, 2842 KiB  
Article
NanoBioAnalytical (NBA) Platform to Decipher Extracellular Vesicles Secreted by Microvascular Endothelial Cells Under Benzo[a]pyrene Exposure
by Geetika Raizada, Joan Guillouzouic, Alain Rouleau, Eric Lesniewska, Eric Le Ferrec, Céline Elie-Caille and Wilfrid Boireau
Biosensors 2025, 15(2), 103; https://doi.org/10.3390/bios15020103 - 11 Feb 2025
Viewed by 834
Abstract
Recent advances in the clinical extracellular vesicles (EVs) field highlight their potential as biomarkers for diverse diseases and therapeutic applications. This study provides an in-depth characterization of 10k EVs from human microvascular endothelial cells (HMEC-1) exposed to benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon [...] Read more.
Recent advances in the clinical extracellular vesicles (EVs) field highlight their potential as biomarkers for diverse diseases and therapeutic applications. This study provides an in-depth characterization of 10k EVs from human microvascular endothelial cells (HMEC-1) exposed to benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon found in food and smoke. Given EVs’ complexity, with numerous surface and cargo proteins, phenotyping remains challenging. Here, we introduce a multiplex biosensor, in µarray format, for profiling EVs from distinct cellular conditions, employing a multimodal approach that combines surface plasmon resonance imaging (SPRi) and in situ atomic force microscopy (AFM) to decipher EVs’ biochemical and biophysical properties. SPRi experiments showed notable EV capture differences on ligands such as Anti-CD36, Anti-CD81, and Anti-ApoA between treated and control conditions, likely due to B[a]P exposure. A complementary AFM study and statistical analyses revealed size differences between EVs from treated and control samples, with ligands like Annexin-V, Anti-CD36, and Anti-VEGFR1 emerging as ligands specific to potential cytotoxicity biomarkers. Our findings suggest that B[a]P exposure may increase EV size and alter marker expression, indicating phenotypic shifts in EVs under cytotoxic stress. The original combination of SPRi and AFM reveals valuable data on the phenotypical and morphological heterogeneities of EV subsets linked to cytotoxic stresses and highlights the potential of EVs as specific toxicological markers. Full article
Show Figures

Figure 1

14 pages, 2405 KiB  
Article
A Dual Nano-Signal Probe-Based Electrochemical Immunosensor for the Simultaneous Detection of Two Biomarkers in Gastric Cancer
by Li-Ting Su, Zhen-Qing Yang, Hua-Ping Peng and Ai-Lin Liu
Biosensors 2025, 15(2), 80; https://doi.org/10.3390/bios15020080 - 31 Jan 2025
Viewed by 1012
Abstract
Detecting multiple tumor markers is of great importance. It helps in early cancer detection, accurate diagnosis, and monitoring treatment. In this work, gold nanoparticles–toluidine blue–graphene oxide (AuNPs-TB–GO) and gold nanoparticles–carboxyl ferrocene–tungsten disulfide (AuNPs–FMC–WS2) nanocomposites were prepared for labeling Carcinoembryonic antigen (CEA) [...] Read more.
Detecting multiple tumor markers is of great importance. It helps in early cancer detection, accurate diagnosis, and monitoring treatment. In this work, gold nanoparticles–toluidine blue–graphene oxide (AuNPs-TB–GO) and gold nanoparticles–carboxyl ferrocene–tungsten disulfide (AuNPs–FMC–WS2) nanocomposites were prepared for labeling Carcinoembryonic antigen (CEA) antibody and Carbohydrate antigen 72–4 (CA72-4) antibody, respectively, and used as two kinds of probes with different electrochemical signals. With the excellent magnetic performance of biotin immune magnetic beads (IMBs), the biofunctional IMBs were firmly deposited on the magnetic glassy carbon electrode (MGCE) surface by applying a constant magnetic field, and then the CEA and CA72-4 antibody were immobilized on the IMBs by the avidin–biotin conjugation. The assay was based on the change in the detection peak current. Under the optimum experimental conditions, the linear range of detection of CEA is of the two-component immunosensor is from 0.01 to 120 ng/mL, with a low detection limit of 0.003 ng/mL, and the linear range of detection of CA72-4 is from 0.05 to 35 U/mL, with a detection limit of 0.016 U/mL. The results showed that the proposed immunosensor enabled simultaneous monitoring of CEA and CA72-4 and exhibited good reproducibility, excellent high selectivity, and sensitivity. In particular, the proposed multiplexed immunoassay approach does not require sophisticated fabrication and is well-suited for high-throughput biosensing and application to other areas. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 22209 KiB  
Review
Advances in Cancer Research: Current and Future Diagnostic and Therapeutic Strategies
by Xiaohui Liu, Hui Jiang and Xuemei Wang
Biosensors 2024, 14(2), 100; https://doi.org/10.3390/bios14020100 - 16 Feb 2024
Cited by 9 | Viewed by 5863
Abstract
Cancers of unknown primary (CUP) exhibit significant cellular heterogeneity and malignancy, which poses significant challenges for diagnosis and treatment. Recent years have seen deeper insights into the imaging, pathology, and genetic characteristics of CUP, driven by interdisciplinary collaboration and the evolution of diagnostic [...] Read more.
Cancers of unknown primary (CUP) exhibit significant cellular heterogeneity and malignancy, which poses significant challenges for diagnosis and treatment. Recent years have seen deeper insights into the imaging, pathology, and genetic characteristics of CUP, driven by interdisciplinary collaboration and the evolution of diagnostic and therapeutic strategies. However, due to their insidious onset, lack of evidence-based medicine, and limited clinical understanding, diagnosing and treating CUP remain a significant challenge. To inspire more creative and fantastic research, herein, we report and highlight recent advances in the diagnosis and therapeutic strategies of CUP. Specifically, we discuss advanced diagnostic technologies, including 12-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography (18F-FDG PET/CT) or 68Ga-FAPI (fibroblast activation protein inhibitor) PET/CT, liquid biopsy, molecular diagnostics, self-assembling nanotechnology, and artificial intelligence (AI). In particular, the discussion will extend to the effective treatment techniques currently available, such as targeted therapies, immunotherapies, and bio-nanotechnology-based therapeutics. Finally, a novel perspective on the challenges and directions for future CUP diagnostic and therapeutic strategies is discussed. Full article
Show Figures

Figure 1

Back to TopTop