Microelectrode Array for Biomedical Applications

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensor and Bioelectronic Devices".

Deadline for manuscript submissions: closed (1 May 2025) | Viewed by 4689

Special Issue Editors


E-Mail Website
Guest Editor
Department of Drug Science and Technology, University of Torino, Turin, Italy
Interests: neuroscience; biophysics; biosensors

E-Mail Website
Guest Editor
College of Information Science and Engineering, Southeast University, Nanjing, China
Interests: biosensors; neural signal sensing

Special Issue Information

Dear colleagues,

For half a century, many kinds of MEA (micro-electrode array) have been developed, including the plane MEA on glass, the Utah electrode, the Michigan electrode, and electrode arrays on silicon. Using different MEAs, different studies have been carried out, including research on the biological performance of artificial cultured neuronal networks and brain slices, the combined study of cell electrophysiological function and morphology, the study of nerve regeneration, the study of prominent plasticity, the study of retina, the study of pacing and electrical excitation conduction characteristics of myocardial cells, acute heart slices, or isolated hearts, and so on. For different studies, different devices, instruments, and systems have been developed. In this Special Issue, all aspects related to MEAs for biomedical applications will be discussed.

Prof. Dr. Valentina Carabelli
Prof. Dr. Zhigong Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micro-electrode array
  • neuronal network
  • brain slice
  • functional electrical stimulation
  • neuronal signal detection
  • neuronal network
  • retinal study
  • heart electrical characteristics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4127 KiB  
Article
A Neuroelectronic Interface with Microstructured Substrates for Spiral Ganglion Neurons Cultured In Vitro: Proof of Concept
by Boris Delipetar, Jelena Žarković Krolo, Ana Bedalov and Damir Kovačić
Biosensors 2025, 15(4), 224; https://doi.org/10.3390/bios15040224 - 1 Apr 2025
Viewed by 412
Abstract
In this study, we present a proof-of-concept neuroelectronic interface (NEI) for extracellular stimulation and recording of neurophysiological activity in spiral ganglion neurons (SGNs) cultured in vitro on three-dimensional, micro-patterned substrates with customized microtopographies, integrated within a 196-channel microelectrode array (MEA). This approach enables [...] Read more.
In this study, we present a proof-of-concept neuroelectronic interface (NEI) for extracellular stimulation and recording of neurophysiological activity in spiral ganglion neurons (SGNs) cultured in vitro on three-dimensional, micro-patterned substrates with customized microtopographies, integrated within a 196-channel microelectrode array (MEA). This approach enables mechanotaxis-driven neuronal contact guidance, promoting SGN growth and development, which is highly sensitive to artificial in vitro environments. The microtopography geometry was optimized based on our previous studies to enhance SGN alignment and neuron-electrode interactions. The NEI was validated using SGNs dissociated from rat pups in the prehearing period and cultured for seven days in vitro (DIV). We observed viable and proliferative cellular cultures with robust neurophysiological responses in the form of local field potentials (LFPs) resembling action potentials (APs), elicited both spontaneously and through electrical stimulation. These findings provide deeper insights into SGN behavior and neuron-microenvironment interactions, laying the groundwork for further advancements in neuroelectronic systems. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

15 pages, 12854 KiB  
Article
Non-Invasive and Long-Term Electrophysiological Monitoring Sensors for Cerebral Organoids Differentiation
by Yan Jin, Yixun Guo, Qiushi Li, Lei Wu, Yuqing Ge and Jianlong Zhao
Biosensors 2025, 15(3), 173; https://doi.org/10.3390/bios15030173 - 7 Mar 2025
Viewed by 961
Abstract
Cerebral organoids derived from human induced pluripotent stem cells (iPSCs) have emerged as powerful in vitro models for studying human brain development and neurological disorders. Understanding the electrophysiological properties of these organoids is crucial for evaluating their functional maturity and potential applications. However, [...] Read more.
Cerebral organoids derived from human induced pluripotent stem cells (iPSCs) have emerged as powerful in vitro models for studying human brain development and neurological disorders. Understanding the electrophysiological properties of these organoids is crucial for evaluating their functional maturity and potential applications. However, the differentiation and maturation of stem cells into cerebral organoids is a long, slow, and error-prone process. Hence, it is vitally crucial to establish a non-invasive method of monitoring the process over a long period of time. In this study, a planar microelectrode array (MEA) with platinum (Pt) black electroplating is designed to monitor the electrophysiological activities and pharmacological responses of cerebral organoids using an external neural signal acquisition system interfaced with the MEA. The planar MEA with Pt black electroplating has a significantly reduced electrode impedance and exhibits a robust capability for the real-time detection of spontaneous neural activities, including extracellular spikes and local field potentials. Distinct electrophysiological signal strengths in cerebral organoids were observed at early and late developmental stages. Further pharmacological stimulations showed that 30 mM KCl would induce a marked increase in spike rate, indicating an enhancement of neuronal depolarization and an elevation of network excitability. This robust response to KCl stimulation in mature networks serves as a reliable indicator of neural maturity in cerebral organoids and underscores the platform’s potential for drug screening applications. This work highlights the integration of MEA technology with cerebral organoids, offering a powerful platform for real-time electrophysiological monitoring. It provides new insights into the functional maturation of neural networks and establishes a reliable system for drug screening and disease modeling, facilitating future research into human brain physiology and pathology. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

19 pages, 3996 KiB  
Article
Peroxidase-like Nanoparticles of Noble Metals Stimulate Increasing Sensitivity of Flavocytochrome b2-Based L-Lactate Biosensors
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Yuriy Boretsky, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2024, 14(11), 562; https://doi.org/10.3390/bios14110562 - 20 Nov 2024
Cited by 1 | Viewed by 1020
Abstract
We report the development of amperometric biosensors (ABSs) employing flavocytochrome b2 (Fcb2) coupled with nanoparticles (NPs) of noble metals on graphite electrode (GE) surfaces. Each NPs/GE configuration was evaluated for its ability to decompose hydrogen peroxide (H2O [...] Read more.
We report the development of amperometric biosensors (ABSs) employing flavocytochrome b2 (Fcb2) coupled with nanoparticles (NPs) of noble metals on graphite electrode (GE) surfaces. Each NPs/GE configuration was evaluated for its ability to decompose hydrogen peroxide (H2O2), mimicking peroxidase (PO) activity. The most effective nanoPO (nPO) was selected for developing ABSs targeting L-lactate. Consequently, several Fcb2/nPO-based ABSs with enhanced sensitivity to L-lactate were developed, demonstrating mediated ET between Fcb2 and the GE surface. The positive effect of noble metal NPs on Fcb2-based sensor sensitivity may be explained by the synergy between their dual roles as both PO mimetics and electron transfer mediators. Furthermore, our findings provide preliminary data that may prompt a re-evaluation of the mechanism of L-lactate oxidation in Fcb2-mediated catalysis. Previously, it was believed that L-lactate oxidation via Fcb2 catalysis did not produce H2O2, unlike catalysis via L-lactate oxidase. Our initial research revealed that the inclusion of nPO in Fcb2-based ABSs significantly increased their sensitivity. Employing other PO mimetics in ABSs for L-lactate yielded similar results, reinforcing our hypothesis that trace amounts of H2O2 may be generated as a transient intermediate in this reaction. The presence of nPO enhances the L-lactate oxidation rate through H2O2 utilization, leading to signal amplification and heightened bioelectrode sensitivity. The proposed ABSs have been successfully tested on blood serum and fermented food samples, showing their promise for L-lactate monitoring in medicine and the food industry. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

19 pages, 4081 KiB  
Article
Au24Cd Nanoenzyme Coating for Enhancing Electrochemical Sensing Performance of Metal Wire Microelectrodes
by Jia-Yi Chen, Shuang Huang, Shuang-Jie Liu, Zheng-Jie Liu, Xing-Yuan Xu, Meng-Yi He, Chuan-Jie Yao, Tao Zhang, Han-Qi Yang, Xin-Shuo Huang, Jing Liu, Xiao-Dong Zhang, Xi Xie and Hui-Jiuan Chen
Biosensors 2024, 14(7), 328; https://doi.org/10.3390/bios14070328 - 2 Jul 2024
Cited by 2 | Viewed by 1664
Abstract
Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this [...] Read more.
Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop