Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm
Abstract
:1. Introduction
- A novel algorithm for ship replenishment path planning, termed MWOA, is introduced.
- The proposed MWOA integrates crossover algorithms and destroy–repair operators to achieve a balance between exploration and exploitation capabilities.
- Results and analyses indicate that this approach offers superior competitiveness and robustness in addressing ship replenishment path planning challenges.
2. Model for the Single-Task Ship Replenishment Path Planning Problem
- (1)
- There are no obstacles between the replenishment points, allowing passage along the shortest path in a Euclidean plane;
- (2)
- All replenishment vessels and equipment operate stably, maintaining the same navigation speed and replenishment speed at all times;
- (3)
- Assuming the starting point is replenishment point 1 (s = 1).
3. Modified Whale Optimization Algorithm
3.1. WOA [30]
- (1)
- Initialization: Generate a random set of whale positions and velocities to initialize the algorithm. These positions represent potential solutions, referred to as whale individuals, which are candidates for the optimal solution in the solution space. Additionally, configure the algorithm’s parameters, such as the number of whales and the maximum number of iterations.
- (2)
- Fitness Evaluation: Determine the fitness score for each whale, evaluating the quality of its solution based on the objective function of the optimization problem. Whales with higher fitness scores indicate better solutions.
- (3)
- Encircling Prey: Assume that the optimal individual in the current population is the prey (i.e., the current optimal solution) and the other whale individuals in the population encircle the position of the optimal whale (or a randomly selected whale) to update their own positions. This process is achieved through specific mathematical formulas, enabling the whale individuals to gradually approach the optimal solution. The formula for updating the position is as follows:
- (4)
- Bubble-net feeding: This simulates the spiral movement of whales around their prey, applying this process to local search. Individual whales gradually approach the prey (the current optimal solution) through a spiral ascent. This step is also achieved through specific mathematical formulas, including two sub-steps of encircling and spiral updating. The formula for updating the position is as follows:
- (5)
- Random Search: In some cases, individual whales perform random searches to enhance exploration capabilities and avoid becoming trapped in local optima. When specific conditions are met (such as |A| being greater than or equal to 1), whales randomly search and prey based on their positions. The position update formula used for encircling prey is applied.
- (6)
- Update global best solution: The optimal global solution is updated based on fitness information to guide the next search step of the whale individuals.
- (7)
- Iteration: The aforementioned steps are repeated until the stopping conditions are met.
3.2. Nearest Neighbor Search
3.3. Crossover Operation
3.4. Destroy and Repair Operators
3.5. Variable Neighborhood Search (VNS)
3.6. MWOA
Algorithm 1: Modified whale optimization algorithm |
|
3.7. Testing the Effectiveness of MWOA
4. Application of MWOA to Single-Task Ship Replenishment Path Planning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, J.; Gang, L. Ship Collaborative Path Planning Method Based on CS-STHA. J. Mar. Sci. Eng. 2022, 10, 1504. [Google Scholar] [CrossRef]
- Cao, S.; Fan, P.; Yan, T.; Xie, C.; Deng, J.; Xu, F.; Shu, Y. Inland Waterway Ship Path Planning Based on Improved RRT Algorithm. J. Mar. Sci. Eng. 2022, 10, 1460. [Google Scholar] [CrossRef]
- Zhen, R.; Gu, Q.; Shi, Z.; Suo, Y. An Improved A-Star Ship Path-Planning Algorithm Considering Current, Water Depth, and Traffic Separation Rules. J. Mar. Sci. Eng. 2023, 11, 1439. [Google Scholar] [CrossRef]
- Du, D.-Z.; Pardalos, P.; Hu, X.; Wu, W. NP-Hard Problems and Approximation Algorithms. In Introduction to Combinatorial Optimization; Du, D.-Z., Pardalos, P.M., Hu, X., Wu, W., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 199–257. [Google Scholar] [CrossRef]
- Rajesh, M.; Surya, S.; Murari Lal, M. Traveling Salesman Problem: An Overview of Applications, Formulations, and Solution Approaches. In Traveling Salesman Problem; Donald, D., Ed.; IntechOpen: Rijeka, Croatia, 2010. [Google Scholar] [CrossRef]
- Bock, S.; Bomsdorf, S.; Boysen, N.; Schneider, M. A survey on the Traveling Salesman Problem and its variants in a warehousing context. Eur. J. Oper. Res. 2025, 322, 1–14. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; He, Z.; Wang, S.; Lin, J. Review of Traveling Salesman Problem Solution Methods. In Bio-Inspired Computing: Theories and Applications, Proceedings of the 18th International Conference, BIC-TA 2023, Changsha, China, 15–17 December 2023; Springer Nature: Singapore, 2024; pp. 3–16. [Google Scholar] [CrossRef]
- Abid, M.; El Kafhali, S.; Amzil, A.; Hanini, M. An Efficient Meta-Heuristic Methods for Travelling Salesman Problem. In Proceedings of the 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), Marrakesh, Morocco, 5–7 March 2023; pp. 498–507. [Google Scholar] [CrossRef]
- Foead, D.; Ghifari, A.; Kusuma, M.B.; Hanafiah, N.; Gunawan, E. A Systematic Literature Review of A* Pathfinding. Procedia Comput. Sci. 2021, 179, 507–514. [Google Scholar] [CrossRef]
- Verma, D.; Messon, D.; Rastogi, M.; Singh, A. Comparative Study Of Various Approaches Of Dijkstra Algorithm. In Proceedings of the 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 19–20 February 2021; pp. 328–336. [Google Scholar] [CrossRef]
- Tarek, A.; Elsayed, H.; Rashad, M.; Hassan, M.; Kafrawy, P.E. Dynamic Programming Applications: A Suvrvey. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; pp. 380–385. [Google Scholar] [CrossRef]
- Zhou, H.; Song, M.; Pedrycz, W. A comparative study of improved GA and PSO in solving multiple traveling salesmen problem. Appl. Soft Comput. 2018, 64, 564–580. [Google Scholar] [CrossRef]
- Sun, S.; Tong, Y.; Qi, B.; Wang, Z.; Wang, X. Hybrid particle swarm optimization algorithm for traveling salesman problem based on ternary optical computer. Procedia Comput. Sci. 2024, 243, 1280–1287. [Google Scholar] [CrossRef]
- Tong, M.; Peng, Z.; Wang, Q. A hybrid artificial bee colony algorithm with high robustness for the multiple traveling salesman problem with multiple depots. Expert Syst. Appl. 2025, 260, 125446. [Google Scholar] [CrossRef]
- Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 2011, 11, 3680–3689. [Google Scholar] [CrossRef]
- Fan, X.; Sayers, W.; Zhang, S.; Han, Z.; Ren, L.; Chizari, H. Review and Classification of Bio-inspired Algorithms and Their Applications. J. Bionic Eng. 2020, 17, 611–631. [Google Scholar] [CrossRef]
- Yan, S.; Liu, W.; Li, X.; Yang, P.; Wu, F.; Yan, Z. A Review of Sparrow Search Algorithms. In Proceedings of the 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Dalian, China, 11–12 December 2022; pp. 1505–1509. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M. Crested Porcupine Optimizer: A new nature-inspired metaheuristic. Knowl. Based Syst. 2024, 284, 111257. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Amiri, M.H.; Mehrabi Hashjin, N.; Montazeri, M.; Mirjalili, S.; Khodadadi, N. Hippopotamus optimization algorithm: A novel nature-inspired optimization algorithm. Sci. Rep. 2024, 14, 5032. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Prayogo, D. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Comput. Struct. 2014, 139, 98–112. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, S.; Liu, Q.; Han, T.; Li, T. GOHBA: Improved Honey Badger Algorithm for Global Optimization. Biomimetics 2025, 10, 92. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, P.; Hu, P.; Yang, Z.; Ke, S.; Huang, L.; Zhang, P. Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning. Biomimetics 2025, 10, 31. [Google Scholar] [CrossRef]
- Liang, H.; Hu, W.; Wang, L.; Gong, K.; Qian, Y.; Li, L. An Improved Spider Wasp Optimizer for UAV Three-Dimensional Path Planning. Biomimetics 2024, 9, 765. [Google Scholar] [CrossRef]
- Eusuff, M.; Lansey, K.; Pasha, F.K. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optim. 2006, 38, 129–154. [Google Scholar] [CrossRef]
- Ezugwu, A.E.-S.; Adewumi, A.O.; Frîncu, M.E. Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem. Expert Syst. Appl. 2017, 77, 189–210. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, J.; Wang, L.; Zhang, H. Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem. Inf. Sci. 2017, 421, 70–84. [Google Scholar] [CrossRef]
- Steffen, V. Particle Swarm Optimization with a Simplex Strategy to Avoid Getting Stuck on Local Optimum. AI Comput. Sci. Robot. Technol. 2022, 1–40. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Gholizadeh, H. A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol. Comput. 2019, 48, 1–24. [Google Scholar] [CrossRef]
- Ray, S.S.; Bandyopadhyay, S.; Pal, S.K. Genetic operators for combinatorial optimization in TSP and microarray gene ordering. Appl. Intell. 2006, 26, 183–195. [Google Scholar] [CrossRef]
- Alkafaween, E.a.; Hassanat, A.; Essa, E.; Elmougy, S. An Efficiency Boost for Genetic Algorithms: Initializing the GA with the Iterative Approximate Method for Optimizing the Traveling Salesman Problem—Experimental Insights. Appl. Sci. 2024, 14, 3151. [Google Scholar] [CrossRef]
- Saxena, A.; Panday, J. Review of Crossover Techniques for Genetic Algorithms. Int. J. Trend Res. Dev. 2016, 3. ISSN: 2394-9333. Available online: http://www.ijtrd.com/papers/IJTRD4264.pdf (accessed on 10 October 2024).
- Chen, P.; Liu, M.; Zhou, S. Discrete Salp Swarm Algorithm for symmetric traveling salesman problem. Math. Biosci. Eng. 2023, 20, 8856–8874. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Y.; Liu, H.; Chen, Y.; Wang, Y.; Wu, G. Adaptive large neighborhood search algorithm with reinforcement search strategy for solving extended cooperative multi task assignment problem of UAVs. Inf. Sci. 2024, 679, 121068. [Google Scholar] [CrossRef]
- Voigt, S. A review and ranking of operators in adaptive large neighborhood search for vehicle routing problems. Eur. J. Oper. Res. 2024, 332, 357–375. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, J.; Chen, Q.; Zhang, W. A two-phase adaptive large neighborhood search algorithm for the electric location routing problem with range anxiety. Appl. Soft Comput. 2024, 167, 112323. [Google Scholar] [CrossRef]
- Guo, J.; Long, J.; Szeto, W.Y.; Tan, W.; Jian, S. Vehicle routing in one-way carsharing service with ridesharing options: A variable neighborhood search algorithm. Transp. Res. Part C Emerg. Technol. 2025, 171, 104983. [Google Scholar] [CrossRef]
Function | MWOA | WOA | ACO | GA | HPSO | SA | |
---|---|---|---|---|---|---|---|
ulysses22 | Best | 75.31 | 102.90 | 75.97 | 75.91 | 75.76 | 76.12 |
Ave | 75.31 | 117.18 | 76.20 | 82.18 | 82.57 | 86.37 | |
Std | 4.26 × 10−14 | 5.88 | 0.08 | 5.47 | 5.98 | 5.76 | |
eil51 | Best | 428.98 | 1234.91 | 447.66 | 530.17 | 526.56 | 516.07 |
Ave | 428.98 | 1300.60 | 459.24 | 582.60 | 598.70 | 578.26 | |
Std | 2.84 × 10−13 | 27.28 | 3.87 | 28.64 | 40.45 | 33.90 | |
st70 | Best | 677.11 | 2817.60 | 715.23 | 1040.53 | 1003.47 | 1022.78 |
Ave | 678.86 | 2930.75 | 735.21 | 1178.41 | 1193.80 | 1134.27 | |
Std | 2.70 | 54.33 | 10.01 | 81.70 | 103.03 | 51.81 | |
kroA100 | Best | 21,285.44 | 132,944.30 | 22,483.69 | 44,994.97 | 45,050.49 | 41,217.24 |
Ave | 21,285.44 | 138,097.00 | 23,465.66 | 52,827.86 | 51,920.57 | 48,071.72 | |
Std | 1.09 × 10−11 | 2189.19 | 294.91 | 4035.75 | 3919.93 | 3418.13 | |
ch130 | Best | 6110.72 | 38,581.12 | 6439.33 | 14,623.08 | 14,294.17 | 12,983.13 |
Ave | 6124.76 | 39,663.67 | 6577.05 | 16,717.00 | 15,533.87 | 14,237.33 | |
Std | 24.86 | 406.58 | 54.01 | 766.11 | 721.97 | 643.24 | |
tsp225 | Best | 3894.53 | 35,022.90 | 4289.05 | 15,741.32 | 13,957.01 | 12,251.55 |
Ave | 3924.48 | 36,198.54 | 4387.65 | 17,619.23 | 15,301.83 | 13,341.45 | |
Std | 10.08 | 469.08 | 45.02 | 651.38 | 609.20 | 546.82 |
Function | MWOA | WOA | ACO | GA | HPSO | SA | |
---|---|---|---|---|---|---|---|
11 replenishment points | Best | 335.63 | 339.05 | 335.63 | 335.63 | 335.63 | 335.63 |
Ave | 335.63 | 369.34 | 335.63 | 340.55 | 347.53 | 358.07 | |
Std | 5.78 × 10−14 | 17.44 | 5.78 × 10−14 | 10.23 | 13.27 | 17.07 | |
20 replenishment points | Best | 366.23 | 498.23 | 369.69 | 375.41 | 369.01 | 377.08 |
Ave | 366.23 | 586.25 | 383.12 | 407.87 | 407.21 | 425.74 | |
Std | 5.78 × 10−14 | 57.18 | 4.05 | 30.60 | 31.35 | 46.68 | |
32 replenishment points | Best | 507.78 | 1336.05 | 507.78 | 583.67 | 535.57 | 574.90 |
Ave | 507.78 | 1434.03 | 512.49 | 723.44 | 714.02 | 725.00 | |
Std | 2.31 × 10−13 | 40.96 | 3.49 | 66.08 | 79.13 | 70.14 | |
39 replenishment points | Best | 33,195.76 | 84,134.97 | 33,988.03 | 39,214.31 | 38,527.20 | 39,450.69 |
Ave | 33,207.94 | 99,360.14 | 34,359.24 | 44,779.90 | 46,323.33 | 48,151.56 | |
Std | 37.35 | 4799.32 | 255.68 | 3913.70 | 5071.25 | 4238.67 | |
48 replenishment points | Best | 36,808.78 | 117,039.90 | 38,332.55 | 42,168.43 | 44,666.96 | 45,000.74 |
Ave | 36,936.84 | 126,649.08 | 39,439.21 | 52,239.47 | 54,061.49 | 53,948.61 | |
Std | 110.68 | 3987.72 | 421.53 | 5641.83 | 4417.54 | 4183.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Yao, G.; Yang, L.; Liu, T.; Sun, J.; Cai, S. Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm. Biomimetics 2025, 10, 179. https://doi.org/10.3390/biomimetics10030179
Chen Q, Yao G, Yang L, Liu T, Sun J, Cai S. Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm. Biomimetics. 2025; 10(3):179. https://doi.org/10.3390/biomimetics10030179
Chicago/Turabian StyleChen, Qinghua, Gang Yao, Lin Yang, Tangying Liu, Jin Sun, and Shuxiang Cai. 2025. "Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm" Biomimetics 10, no. 3: 179. https://doi.org/10.3390/biomimetics10030179
APA StyleChen, Q., Yao, G., Yang, L., Liu, T., Sun, J., & Cai, S. (2025). Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm. Biomimetics, 10(3), 179. https://doi.org/10.3390/biomimetics10030179