Bio-Inspired Nanochannels

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biomimetic Design, Constructions and Devices".

Deadline for manuscript submissions: closed (15 August 2025) | Viewed by 1659

Special Issue Editor


E-Mail Website
Guest Editor
School of Engineering, RMIT University, Melbourne, Australia
Interests: metal-organic frameworks; separation membranes; lithium extraction; bio-inspired nanochannels; colloidal photonic crystals; sensors; bio-inspired interfacial materials with special wettability; inkjet printing

Special Issue Information

Dear Colleagues,

Biological nanochannels are integral components of biological membranes, regulating the transport of ions and molecules across cell membranes and playing critical roles in the daily life of all creatures. In the human body, ion channels such as Na+, K+, Ca2+ and Mg2+ channels are pivotal in maintaining electrolyte balance and facilitating nerve transmission. Drawing inspiration from these biological ion channels, researchers have developed artificial ion channels that can achieve selective mass transport through meticulously designed structures. These bio-inspired nanochannels have shown great potential in a range of applications, including sensing, membrane separation, energy conversion, stimuli-responsive gating effects, arithmetic logic unit and memory devices. The fascinating research field of bio-inspired nanochannels has attracted significant attention in recent years, leading to rapid advancements. This Special Issue will highlight the latest developments in bio-inspired nanochannels and their diverse applications, showcasing their potential to revolutionize fields such as biosensing, environmental monitoring, resource recovery, pollution treatment, and smart materials. Through innovative design and engineering, bio-inspired nanochannels promise to bridge the gap between biological inspiration and technological innovation, opening new avenues for scientific and industrial breakthroughs.

Dr. Jue Hou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-inspired nanochannel
  • biosensing
  • resource recovery
  • pollution treatment
  • environmental monitoring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 5376 KB  
Article
Photothermal Porous Material with Gradient Hydrophobicity for Fast and Highly Selective Oil/Water Separation and Crude Oil Recovery
by Tianwen Wang, Song Song, Shiwen Bao, Yanfeng Gong, Yujue Wang, Chuncai Wang, Wenshao Ma, Nuo Liu, Kunyan Sui, Jun Gao and Xueli Liu
Biomimetics 2025, 10(9), 585; https://doi.org/10.3390/biomimetics10090585 (registering DOI) - 3 Sep 2025
Abstract
Oil spills and oily wastewater discharges have posed severe threats to the ecosystem and human health, yet efficient cleanup and recovery remain huge challenges. The absorption of crude oil is especially difficult due to its high viscosity. In this study, we propose a [...] Read more.
Oil spills and oily wastewater discharges have posed severe threats to the ecosystem and human health, yet efficient cleanup and recovery remain huge challenges. The absorption of crude oil is especially difficult due to its high viscosity. In this study, we propose a strategy for the fast and highly selective absorption of crude oil as well as other oils and organic solvents with variable viscosity by combining the desert beetle’s back-inspired gradient hydrophobicity with the photothermal effect to enhance the absorption rate. The oil-absorbent material was prepared through the alkylsilane-based gradient chemical modification of MXene-polyurethane sponges. The hydrophobic gradient across the composite sponge offers an extra driving force for the selective oil wetting in the sponge. Owing to the synergistic effect between gradient wettability and photothermal heating, a faster absorption rate, in addition to the high separation rate, was achieved for a variety of oils, including thick crude oil, thin crude oil, and light diesel oil, compared to that without gradient wettability. The as-prepared material is robust with good repeatability for the oil absorption. The surface silane modification was also demonstrated to help prevent the oxidation of MXene, facilitating the long-term stability of the material. This study will enlighten the development of fast and highly selective liquid absorbents. Full article
(This article belongs to the Special Issue Bio-Inspired Nanochannels)
Show Figures

Figure 1

18 pages, 7963 KB  
Article
Theoretical and Experimental Study of an Electrokinetic Micromanipulator for Biological Applications
by Reza Hadjiaghaie Vafaie, Ali Fardi-Ilkhchy, Sobhan Sheykhivand and Sebelan Danishvar
Biomimetics 2025, 10(1), 56; https://doi.org/10.3390/biomimetics10010056 - 15 Jan 2025
Cited by 1 | Viewed by 1226
Abstract
The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips [...] Read more.
The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g., for fluid-driven and manipulation purposes such as concentrating and mixing. By appropriately switching the voltage on the electrode structures and inducing AC electrothermal forces within the channel, a fluidic network with pumping and manipulation capabilities can be achieved, enabling the control of fluid velocity/direction and also fluid rotation. By using finite element analysis, coupled physics of electrical, thermal, fluidic fields, and molecular diffusion transport were solved. AC electrothermal flow was studied for pumping and mixing applications, and the optimal model was extracted. The microfluidic chip was fabricated using two processes: electrode structure development on the chip and silicon mold fabrication in a cleanroom. PDMS was prepared as the microchannel material and bonded to the electrode structure. After implementing the chip holder and excitation circuit, a biological buffer with varying ionic strengths (0.2, 0.4, and 0.6 [S/m]) was prepared, mixed with fluorescent particles, and loaded into the microfluidic chip. Experimental results demonstrated the efficiency of the proposed chip for biological applications, showing that stronger flows were generated with increasing fluid conductivity and excitation voltage. The system behavior was characterized using an impedance analyzer. Frequency response analysis revealed that for a solution with an electrical conductivity of 0.6 [S/m], the fluid velocity remained almost constant within a frequency range of 100 kHz to 10 MHz. Overall, the experimental results showed good agreement with the simulation outcomes. Full article
(This article belongs to the Special Issue Bio-Inspired Nanochannels)
Show Figures

Figure 1

Back to TopTop