Advances in Robotic-Assisted Rehabilitation

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biomedical Engineering and Biomaterials".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 254

Special Issue Editor


E-Mail Website
Guest Editor
Department of Occupational Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
Interests: robotic-assisted rehabilitation; wearable robotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Bioengineering focuses on emerging topics in robotics-assisted rehabilitation technologies and their impact on clinical outcomes, daily living activities, participation, and quality of life at individual, community, and societal levels. Robotic systems have revolutionized rehabilitation by providing personalized, adaptive, and precise interventions for individuals recovering from neurological, musculoskeletal, and other debilitating conditions. This issue aims to showcase advances in robotic hardware, control algorithms, sensors, and user interfaces, as well as the integration of artificial intelligence and machine learning for real-time monitoring and adaptive rehabilitation strategies.

We invite submissions addressing innovative robotics-assisted rehabilitation approaches, clinical trials evaluating efficacy and usability, and interdisciplinary research bridging bioengineering, neuroscience, and rehabilitation sciences. Contributions to translational studies, human–robot interactions, and the ethical implications of robotics in rehabilitation are also encouraged. The ultimate goal of this Special Issue is to foster a deeper understanding of the role of robotics in shaping the future of personalized and effective rehabilitation therapies.

Dr. Hongwu Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • robotics-assisted rehabilitation
  • neurological rehabilitation robotics
  • wearable robotics
  • exoskeletons and assistive robotics
  • adaptive control in robotics
  • human–robot interaction
  • AI and machine learning in rehabilitation
  • translational studies in rehabilitation robotics
  • ethical considerations in rehabilitation robotics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5730 KiB  
Article
EMG-Controlled Soft Robotic Bicep Enhancement
by Jiayue Zhang, Daniel Vanderbilt, Ethan Fitz and Janet Dong
Bioengineering 2025, 12(5), 526; https://doi.org/10.3390/bioengineering12050526 - 15 May 2025
Viewed by 113
Abstract
Industrial workers often engage in repetitive lifting tasks. This type of continual loading on their arms throughout the workday can lead to muscle or tendon injuries. A non-intrusive system designed to assist a worker’s arms would help alleviate strain on their muscles, thereby [...] Read more.
Industrial workers often engage in repetitive lifting tasks. This type of continual loading on their arms throughout the workday can lead to muscle or tendon injuries. A non-intrusive system designed to assist a worker’s arms would help alleviate strain on their muscles, thereby preventing injury and minimizing productivity losses. The goal of this project is to develop a wearable soft robotic arm enhancement device that supports a worker’s muscles by sharing the load during lifting tasks, thereby increasing their lifting capacity, reducing fatigue, and improving their endurance to help prevent injury. The device should be easy to use and wear, functioning in relative harmony with the user’s own muscles. It should not restrict the user’s range of motion or flexibility. The human arm consists of numerous muscles that work together to enable its movement. However, as a proof of concept, this project focuses on developing a prototype to enhance the biceps brachii muscle, the primary muscle involved in pulling movements during lifting. Key components of the prototype include a soft robotic muscle or actuator analogous to the biceps, a control system for the pneumatic muscle actuator, and a method for securing the soft muscle to the user’s arm. The McKibben-inspired pneumatic muscle was chosen as the soft actuator for the prototype. A hybrid control algorithm, incorporating PID and model-based control methods, was developed. Electromyography (EMG) and pressure sensors were utilized as inputs for the control algorithms. This paper discusses the design strategies for the device and the preliminary results of the feasibility testing. Based on the results, a wearable EMG-controlled soft robotic arm augmentation could effectively enhance the endurance of industrial workers engaged in repetitive lifting tasks. Full article
(This article belongs to the Special Issue Advances in Robotic-Assisted Rehabilitation)
Show Figures

Figure 1

Back to TopTop