Current Research on Mathematical Inequalities II

A special issue of Axioms (ISSN 2075-1680). This special issue belongs to the section "Mathematical Analysis".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 15366

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mathematics, Université de Caen, LMNO, Campus II, Science 3, 14032 Caen, France
Interests: mathematical statistics; applied statistics; data analysis; probability; applied probability; analytic inequalities
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The subject of mathematical inequalities has always fascinated mathematicians, and is still the subject of numerous research articles. Mathematical inequalities can be self-sufficient, or be key parts of proofs of important theorems in all branches of mathematics. Inequalities are essential to mathematics; thus, any advancements in this area are welcome.

The recent success of the Special Issue "Current Research on Mathematical Inequalities" published in Axioms is proof of this. On this solid foundation, Axioms offers a new research space on mathematical inequalities, entitled "Current Research on Mathematical Inequalities II". The objective is to compile cutting-edge research the most recent advances regarding various types of mathematical inequality. Inequalities that are purely mathematical, applied mathematical, or based on strong conjecture are all acceptable. Only papers that are flawlessly written, organized, and contain novel research findings will be taken into consideration.

The following are just a few examples of the research topics considered in this Special Issue: conjectural inequalities with numerical evidence; inequalities in analysis (sophisticated or not, with special functions or not, applied or not); inequalities in approximation theory; inequalities in combinatorics; inequalities in economics; inequalities in geometry; inequalities in mechanics; inequalities in number theory;  inequalities in optimization; inequalities in physics; inequalities in probability; and inequalities in statistics.

Dr. Christophe Chesneau
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Axioms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inequalities in theoretical mathematics
  • inequalities in applied mathematics
  • inequalities in physics
  • inequalities in probability and statistics
  • conjectural inequality with numerical evidence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 5446 KiB  
Article
A Parametric Method for Proving Some Analytic Inequalities
by Branko Malešević, Miloš Mićović and Bojana Mihailović
Axioms 2024, 13(8), 520; https://doi.org/10.3390/axioms13080520 - 1 Aug 2024
Cited by 1 | Viewed by 1020
Abstract
In this paper, a parametric method for proving inequalities is described. The method is based on associating a considered inequality with the corresponding stratified family of functions. Many inequalities from the theory of analytic inequalities can be interpreted using families of functions that [...] Read more.
In this paper, a parametric method for proving inequalities is described. The method is based on associating a considered inequality with the corresponding stratified family of functions. Many inequalities from the theory of analytic inequalities can be interpreted using families of functions that are stratified with respect to some parameter. By discussing the sign of the functions from the family by the parameter according to which the family is stratified, inequalities are obtained that contain the best possible constants, if they exist. The application of this method is demonstrated for four inequalities: the Cusa–Huygens inequality, the Wilker-type inequality and the two Mitrinović–Adamović-type inequalities. Significantly simpler proofs and improvements of all these inequalities are provided. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
Show Figures

Figure 1

12 pages, 259 KiB  
Article
Some Refinements and Generalizations of Bohr’s Inequality
by Salma Aljawi, Cristian Conde and Kais Feki
Axioms 2024, 13(7), 436; https://doi.org/10.3390/axioms13070436 - 28 Jun 2024
Viewed by 674
Abstract
In this article, we delve into the classic Bohr inequality for complex numbers, a fundamental result in complex analysis with broad mathematical applications. We offer refinements and generalizations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon, [...] Read more.
In this article, we delve into the classic Bohr inequality for complex numbers, a fundamental result in complex analysis with broad mathematical applications. We offer refinements and generalizations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon, as well as leveraging the class of functions defined by the Daykin–Eliezer–Carlitz inequality. Our novel contribution lies in demonstrating that Bohr’s and Bergström’s inequalities can be derived from one another, revealing a deeper interconnectedness between these results. Furthermore, we present several new generalizations of Bohr’s inequality, along with other notable inequalities from the literature, and discuss their various implications. By providing more comprehensive and verifiable conditions, our work extends previous research and enhances the understanding and applicability of Bohr’s inequality in mathematical studies. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
15 pages, 272 KiB  
Article
Inequalities of Ostrowski Type for Functions Whose Derivative Module Is Relatively Convex on Time Scales
by Haytham M. Rezk, Ahmed I. Saied, Maha Ali, Ghada AlNemer and Mohammed Zakarya
Axioms 2024, 13(4), 235; https://doi.org/10.3390/axioms13040235 - 2 Apr 2024
Cited by 1 | Viewed by 1089
Abstract
In this article, we discuss several novel generalized Ostrowski-type inequalities for functions whose derivative module is relatively convex in time scales calculus. Our core findings are proved by using the integration by parts technique, Hölder’s inequality, and the chain rule on time scales. [...] Read more.
In this article, we discuss several novel generalized Ostrowski-type inequalities for functions whose derivative module is relatively convex in time scales calculus. Our core findings are proved by using the integration by parts technique, Hölder’s inequality, and the chain rule on time scales. These derived inequalities expand the existing literature, enriching specific integral inequalities within this domain. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
25 pages, 336 KiB  
Article
Fundamental Properties of Muckenhoupt and Gehring Weights on Time Scales
by Ravi P. Agarwal, Mohamed Abdalla Darwish, Hamdi Ali Elshamy and Samir H. Saker
Axioms 2024, 13(2), 98; https://doi.org/10.3390/axioms13020098 - 31 Jan 2024
Cited by 2 | Viewed by 1727
Abstract
Some fundamental properties of the Muckenhoupt class Ap of weights and the Gehring class Gq of weights on time scales and some relations between them will be proved in this paper. To prove the main results, we will apply an approach [...] Read more.
Some fundamental properties of the Muckenhoupt class Ap of weights and the Gehring class Gq of weights on time scales and some relations between them will be proved in this paper. To prove the main results, we will apply an approach based on proving some properties of integral operators on time scales with powers and certain mathematical relations connecting the norms of Muckenhoupt and Gehring classes. The results as special cases cover the results for functions following David Cruz-Uribe, C. J. Neugebauer, and A. Popoli, and when the time scale equals the positive integers, the results for sequences are essentially new. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
14 pages, 298 KiB  
Article
Improvements of Integral Majorization Inequality with Applications to Divergences
by Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Chanisara Metpattarahiran and Thanin Sitthiwirattham
Axioms 2024, 13(1), 21; https://doi.org/10.3390/axioms13010021 - 28 Dec 2023
Cited by 2 | Viewed by 1563
Abstract
Within the recent wave of research advancements, mathematical inequalities and their practical applications play a notably significant role across various domains. In this regard, inequalities offer a captivating arena for scholarly endeavors and investigational pursuits. This research work aims to present new improvements [...] Read more.
Within the recent wave of research advancements, mathematical inequalities and their practical applications play a notably significant role across various domains. In this regard, inequalities offer a captivating arena for scholarly endeavors and investigational pursuits. This research work aims to present new improvements for the integral majorization inequalities using an interesting aproach. Certain previous improvements have been achieved for the Jensen inequality as direct outcomes of the main results. Additionally, estimates for the Csiszár divergence and its cases are provided as applications of the main results. The circumstances under which the principal outcomes offer enhanced estimations for majorization differences are also underscored and emphasized. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
13 pages, 286 KiB  
Article
Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps
by Yonghui Ren
Axioms 2023, 12(10), 977; https://doi.org/10.3390/axioms12100977 - 17 Oct 2023
Viewed by 1256
Abstract
We shall present some more generalized and further refinements of reversed AM-GM operator inequalities for positive linear maps due to Xue’s and Ali’s publications. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
13 pages, 284 KiB  
Article
Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters
by Yiyuan Li, Yanru Zhong and Bicheng Yang
Axioms 2023, 12(10), 956; https://doi.org/10.3390/axioms12100956 - 10 Oct 2023
Cited by 1 | Viewed by 1133
Abstract
By means of the weight functions, the idea of introduced parameters and the transfer formulas, two multidimensional Hilbert-type integral inequalities with the general nonhomogeneous kernel as [...] Read more.
By means of the weight functions, the idea of introduced parameters and the transfer formulas, two multidimensional Hilbert-type integral inequalities with the general nonhomogeneous kernel as H(||x||αλ1||y||βλ2)(λ1,λ20) are given, which are some extensions of the Hilbert-type integral inequalities in the two-dimensional case. Some equivalent conditions of the best value and several parameters related to the new inequalities are provided. Two corollaries regarding the kernel, represented as kλ(||x||αλ1,||y||βλ2)(λ1,λ20), are given, and a few new inequalities for the particular parameters are obtained. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
20 pages, 346 KiB  
Article
Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations
by Muhammad Samraiz, Saima Naheed, Ayesha Gul, Gauhar Rahman and Miguel Vivas-Cortez
Axioms 2023, 12(10), 914; https://doi.org/10.3390/axioms12100914 - 26 Sep 2023
Cited by 2 | Viewed by 1637
Abstract
Our paper explores Hermite–Hadamard inequalities through the application of Abel–Gontscharoff Green’s function methodology, which involves interpolating polynomials and Riemann-type generalized fractional integrals. While establishing our main results, we explore new identities. These identities are used to estimate novel findings for functions, such that [...] Read more.
Our paper explores Hermite–Hadamard inequalities through the application of Abel–Gontscharoff Green’s function methodology, which involves interpolating polynomials and Riemann-type generalized fractional integrals. While establishing our main results, we explore new identities. These identities are used to estimate novel findings for functions, such that the second derivative of the functions is monotone, absolutely convex, and concave. A section relating the results of exploration to generalized means and trapezoid formulas is included in the applications. We anticipate that the method presented in this study will inspire further research in this field. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
17 pages, 346 KiB  
Article
Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory
by Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai and Thanin Sitthiwirattham
Axioms 2023, 12(9), 885; https://doi.org/10.3390/axioms12090885 - 16 Sep 2023
Cited by 3 | Viewed by 1529
Abstract
In the recent era of research developments, mathematical inequalities and their applications perform a very consequential role in different aspects, and they provide an engaging area for research activities. In this paper, we propose a new approach for the improvement of the classical [...] Read more.
In the recent era of research developments, mathematical inequalities and their applications perform a very consequential role in different aspects, and they provide an engaging area for research activities. In this paper, we propose a new approach for the improvement of the classical majorization inequality and its weighted versions in a discrete sense. The proposed improvements give several estimates for the majorization differences. Some earlier improvements of the Jensen and Slater inequalities are deduced as direct consequences of the obtained results. We also discuss the conditions under which the main results give better estimates for the majorization differences. Applications of the acquired results are also presented in information theory. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
20 pages, 321 KiB  
Article
On Further Refinements of Numerical Radius Inequalities
by Ayman Hazaymeh, Ahmad Qazza, Raed Hatamleh, Mohammad W. Alomari and Rania Saadeh
Axioms 2023, 12(9), 807; https://doi.org/10.3390/axioms12090807 - 22 Aug 2023
Cited by 26 | Viewed by 1152
Abstract
This paper introduces several generalized extensions of some recent numerical radius inequalities of Hilbert space operators. More preciously, these inequalities refine the recent inequalities that were proved in literature. It has already been demonstrated that some inequalities can be improved or restored by [...] Read more.
This paper introduces several generalized extensions of some recent numerical radius inequalities of Hilbert space operators. More preciously, these inequalities refine the recent inequalities that were proved in literature. It has already been demonstrated that some inequalities can be improved or restored by concatenating some into one inequality. The main idea of this paper is to extend the existing numerical radius inequalities by providing a unified framework. We also present a numerical example to demonstrate the effectiveness of the proposed approach. Roughly, our approach combines the existing inequalities, proved in literature, into a single inequality that can be used to obtain improved or restored results. This unified approach allows us to extend the existing numerical radius inequalities and show their effectiveness through numerical experiments. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
11 pages, 294 KiB  
Article
A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function
by Ghulam Farid, Hafsa Tariq, Ferdous M. O. Tawfiq, Jong-Suk Ro and Saira Zainab
Axioms 2023, 12(8), 795; https://doi.org/10.3390/axioms12080795 - 17 Aug 2023
Cited by 1 | Viewed by 1256
Abstract
This article aims to obtain inequalities containing the unified Mittag–Leffler function which give bounds of integral operators for a generalized convexity. These findings provide generalizations and refinements of many inequalities. By setting values of monotone functions, it is possible to reproduce results for [...] Read more.
This article aims to obtain inequalities containing the unified Mittag–Leffler function which give bounds of integral operators for a generalized convexity. These findings provide generalizations and refinements of many inequalities. By setting values of monotone functions, it is possible to reproduce results for classical convexities. The Hadamard-type inequalities for several classes related to convex functions are identified in remarks, and some of them are also presented in last section. Full article
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)
Back to TopTop