Improvements of Integral Majorization Inequality with Applications to Divergences
Abstract
:1. Introduction
2. Main Results
3. Analysis of the Superiority of Key Findings
- A By employing the proof concept outlined in [41], one can substantiate that the expression “” remains non-negative under specified conditions that the function is convex, with further restrictions:(i) is a monotonically decreasing function that fulfills(ii) is a monotonically increasing function with
- B If is a convex function and both g and exhibit monotonicity in the same direction and satisfy the condition expressed as
- C Applying the proof methodology of Theorem 7 given in [40], considering the stipulations that the function is both increasing and convex and further assuming that g and are monotonicity functions in a similar direction, while also satisfying the inequality given by:
4. Applications in Information Theory
- The Shannon entropy is defined by:
- The Kullback–Liebler divergence is defined as follows:
- The Bhattacharyya coefficient is defined as:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Rashid, R.; Latif, M.A.; Hammouch, Z.; Chu, Y.-M. Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef]
- Riaz, M.; Razzaq, A.; Kalsoom, H.; Pamučar, D.; Farid, H.M.A.; Chu, Y.-M. q-rung Orthopair fuzzy geometric aggregation operators based on generalized and group-generalized parameters with application to water loss management. Symmetry 2020, 12, 1236. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.-M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas, Fís. Nat. Ser. Matemáticas 2021, 115, 46. [Google Scholar] [CrossRef]
- Crosby, F. A Model of Egoistical Relative Deprivation. Psychol. Rev. 1976, 83, 85–113. [Google Scholar] [CrossRef]
- Adeel, M.; Khan, K.A.; Pečarić, Đ.; Pečarić, J. Estimation of f–divergence and Shannon entropy by Levinson type inequalities for higher–order convex functions via Taylor polynomial. J. Math. Compt. Sci. 2020, 21, 322–334. [Google Scholar] [CrossRef]
- Chu, H.-H.; Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Chu, Y.-M. Dumitru Baleanu, Quantum analogs of Ostrowski-type inequalities for Raina’s function correlated with coordinated generalized Φ-convex functions. Symmetry 2020, 12, 308. [Google Scholar] [CrossRef]
- Pečarić, J.; Persson, L.E.; Tong, Y.L. Convex Functions, Partial Ordering and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Riaz, M.; Hashmi, M.R.; Pamucar, D.; Chu, Y.-M. Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM. Comput. Model. Eng. Sci. 2021, 126, 1125–1164. [Google Scholar] [CrossRef]
- Chen, S.-B.; Rashid, S.; Hammouch, Z.; Noor, M.A.; Ashraf, R.; Chu, Y.-M. Integral inequalities via Raina’s fractional integrals operator with respect to a monotone function. Adv. Differ. Equ. 2020, 2020, 647. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Chu, Y.-M.; Baleanu, D. Two-variable quantum integral inequalities of Simpson-type based on higher-order generalized strongly preinvex and quasi-preinvex functions. Symmetry 2020, 12, 51. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas, Fís. Nat. Ser. Matemáticas 2020, 114, 96. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, E.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Mercer, A.M. A Variant of Jensen’s Inequality. J. Ineq. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Slater, M.L. A companion inequality to Jensen’s inequality. J. Approx. Theory 1981, 32, 160–166. [Google Scholar] [CrossRef]
- Boas, R.P. The Jensen–Steffensen inequality. Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. 1970, 302–319, 1–8. [Google Scholar]
- Hewitt, E.; Stromberg, K.R. Real and Abstract Analysis; Graduate Text in Mathematics 25; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1965. [Google Scholar]
- Mukhopadhyay, N. On sharp Jensen’s inequality and some unusual applications, communications in statistics. Theor. Methods 2017, 40, 1283–1297. [Google Scholar] [CrossRef]
- Niaz, T.; Khan, K.A.; Pečarić, J. On refinement of Jensen’s inequality for 3–convex function at a point. Turkish J. Ineq. 2020, 4, 70–80. [Google Scholar]
- Pečarić, J.E. A companion to Jensen–Steffensen’s inequality. J. Approx. Theory 1985, 44, 289–291. [Google Scholar] [CrossRef]
- Micić, J.; Pečarić, J.; Jurica, P. Refined Jensen’s operator inequality with condition on spectra. Oper. Matrices 2013, 7, 293–308. [Google Scholar]
- Viloria, J.M.; Vivas–Cortez, M. Jensen’s inequality for convex functions on N–coordinates. Appl. Math. Inf. Sci. 2020, 12, 931–935. [Google Scholar] [CrossRef]
- White, C.C.; Harrington, D.P. Application of Jensen’s inequality to adaptive suboptimal design. J. Optim. Theory Appl. 1980, 32, 89–99. [Google Scholar] [CrossRef]
- Adil Khan, M.; Ullah, H.; Saeed, T. Some estimations of the Jensen difference and applications. Math. Meth. Appl. Sci. 2023, 46, 5863–5892. [Google Scholar] [CrossRef]
- Kian, M. Operator Jensen inequality for superquadratic functions. Linear Algebra Appl. 2014, 456, 82–87. [Google Scholar] [CrossRef]
- Matković, A.; Pečarić, J.; Perić, I. A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 2006, 418, 551–564. [Google Scholar] [CrossRef]
- Zhu, X.L.; Yang, G.H. Jensen inequality approach to stability analysis of discrete–time systems with time-varying delay. In Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 1644–1649. [Google Scholar]
- Ullah, H.; Adil Khan, M.; Saeed, T.; Sayed, Z.M.M.M. Some improvements of Jensen’s inequality via 4–convexity and applications. J. Funct. Space 2022, 2022, 2157375. [Google Scholar] [CrossRef]
- You, X.; Adil Khan, M.; Ullah, H.; Saeed, T. Improvements of Slater’s inequality by means of 4–convexity and its applications. Mathematics 2022, 10, 1274. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Vidal, G. Majorization and the interconversion of bipartite states. Quantum Inf. Comput. 2001, 1, 76–93. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Springer: New York, NY, USA, 1997. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Dragomir, S.S. Some majorisation type discrete inequalities for convex functions. Math. Ineq. Appl. 2004, 7, 207–216. [Google Scholar] [CrossRef]
- Karamata, J. Sur une inégalité relative aux fonctions convexes. Publ. Math. Univ. Belgrade 1932, 1, 145–148. [Google Scholar]
- Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
- Arens, R.; Goldberg, M. Weighted l∞ norms for matrices. Linear Algebra Appl. 1994, 201, 155–163. [Google Scholar] [CrossRef]
- Barnett, N.S.; Cerone, P.; Dragomir, S.S. Majorisation inequalities for Stieltjes integrals. Appl. Math. Lett. 2009, 22, 416–421. [Google Scholar] [CrossRef]
- Maligranda, L.; Pečarić, J.; Persson, L.E. Weighted Favard and Berwald inequalities. J. Math. Anal. Appl. 1995, 190, 248–262. [Google Scholar] [CrossRef]
- Niezgoda, M. Remarks on convex functions and separable sequences. Discrete Math. 2008, 308, 1765–1773. [Google Scholar] [CrossRef]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 2771–2779. [Google Scholar] [CrossRef]
- Faisal, S.; Adil Khan, M.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New “Conticrete” Hermite-Hadamard-Jensen-Mercer fractional inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
- Adil Khan, M.; Bradanović, S.I.; Latif, N.; Peĉarić, Đ.; Peĉarić, J. Monographs in Inequalities 16; Element: Zagreb, Croatia, 2019; p. 390.
- Bradanović, S.I. More accurate majorization inequalities obtained via superquadratic and convexity with application to entropies Mediterr. J. Math. 2021, 18, 79. [Google Scholar]
- Chin, S.; Huh, J. Majorization and the time complexity of linear optical networks. J. Phys. A Math. Theor. 2019, 52, 245301. [Google Scholar] [CrossRef]
- Horváth, L. Uniform treatment of integral majorization inequalities with applications to Hermite-Hadamard-Fejér-Type inequalities and f-divergences. Entropy 2023, 25, 954. [Google Scholar] [CrossRef]
- Ullah, H.; Adil Khan, M.; Saeed, T. Determination of bounds for the Jensen gap and its applications. Mathematics 2021, 9, 3132. [Google Scholar] [CrossRef]
- Basir, A.; Adil Khan, M.; Ullah, H.; Almalki, Y.; Chasreechai, S.; Sitthiwirattham, T. Derivation of bounds for majorization differences by a novel method and its applications in information theory. Axioms 2023, 12, 885. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basir, A.; Khan, M.A.; Ullah, H.; Almalki, Y.; Metpattarahiran, C.; Sitthiwirattham, T. Improvements of Integral Majorization Inequality with Applications to Divergences. Axioms 2024, 13, 21. https://doi.org/10.3390/axioms13010021
Basir A, Khan MA, Ullah H, Almalki Y, Metpattarahiran C, Sitthiwirattham T. Improvements of Integral Majorization Inequality with Applications to Divergences. Axioms. 2024; 13(1):21. https://doi.org/10.3390/axioms13010021
Chicago/Turabian StyleBasir, Abdul, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Chanisara Metpattarahiran, and Thanin Sitthiwirattham. 2024. "Improvements of Integral Majorization Inequality with Applications to Divergences" Axioms 13, no. 1: 21. https://doi.org/10.3390/axioms13010021
APA StyleBasir, A., Khan, M. A., Ullah, H., Almalki, Y., Metpattarahiran, C., & Sitthiwirattham, T. (2024). Improvements of Integral Majorization Inequality with Applications to Divergences. Axioms, 13(1), 21. https://doi.org/10.3390/axioms13010021