Next Article in Journal
Spectrum of the Cozero-Divisor Graph Associated to Ring Zn
Next Article in Special Issue
Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps
Previous Article in Journal
Robust Solution of the Multi-Model Singular Linear-Quadratic Optimal Control Problem: Regularization Approach
Previous Article in Special Issue
Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters

1
School of Art and Design, Guilin University of Electronic Technology, Guilin 541004, China
2
School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
3
School of Mathematics, Guangdong University of Education, Guangzhou 510303, China
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(10), 956; https://doi.org/10.3390/axioms12100956
Submission received: 6 August 2023 / Revised: 26 September 2023 / Accepted: 3 October 2023 / Published: 10 October 2023
(This article belongs to the Special Issue Current Research on Mathematical Inequalities II)

Abstract

:
By means of the weight functions, the idea of introduced parameters and the transfer formulas, two multidimensional Hilbert-type integral inequalities with the general nonhomogeneous kernel as H ( | | x | | α λ 1 | | y | | β λ 2 ) ( λ 1 , λ 2 0 ) are given, which are some extensions of the Hilbert-type integral inequalities in the two-dimensional case. Some equivalent conditions of the best value and several parameters related to the new inequalities are provided. Two corollaries regarding the kernel, represented as k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) ( λ 1 , λ 2 0 ) , are given, and a few new inequalities for the particular parameters are obtained.

1. Introduction

If 0 < m = 1 a m 2 < and 0 < n = 1 b n 2 < , then we have the well-known Hilbert’s inequality with the best value π as follows (cf. [1], Theorem 315):
m = 1 n = 1 a m b n m + n < π ( m = 1 a m 2 n = 1 b n 2 ) 1 / 2 .
Assuming that 0 < 0 f 2 ( x ) d x < and 0 < 0 g 2 ( y ) d y < , we still have the integral analogue of (1) named in Hilbert’s integral inequality as follows (cf. [1], Theorem 316):
0 0 f ( x ) g ( y ) x + y d x d y < π ( 0 f 2 ( x ) d x 0 g 2 ( y ) d y ) 1 / 2 ,
where π is the best value. (1) and (2), with their extensions, played an important role in real analysis. Among them, the paper [2] studied the generalizations of (1) and (2), and the papers [3,4] considered the properties of m-linear Hilbert-type inequality and two kinds of Hilbert-type inequalities involving differential operators.
A half-discrete Hilbert-type inequality was provided in 1934 as follows: If K ( x ) ( x > 0 ) is decreasing, p > 1 , 1 p + 1 q = 1 , 0 < φ ( s ) = 0 K ( x ) x s 1 d x < , f ( x ) 0 , satisfying
0 < 0 f p ( x ) d x < ,
then (cf. [1], Theorem 351)
n = 1 n p 2 ( 0 K ( n x ) f ( x ) d x ) p < φ p ( 1 q ) 0 f p ( x ) d x .
Some new generalizations and applications of (3) were provided by [5,6] in recent years.
In 2006, by means of the summation formula, Krnic et al. [7] gave a generalization of (1) with the kernel as 1 ( m + n ) λ ( 0 < λ 4 ) . In 2019, following [7], Adiyasuren et al. [8] gave a generalization of (1) involving two partial sums. In 2016-2017, Hong et al. [9,10] obtained some equivalent statements of the generalizations of (1) and (2) with the best values related to a few parameters. Two similar results were provided by [11,12]. Among them, the paper [11] considered multidimensional Hardy-type inequalities in Hölder spaces, and the paper [12] studied a new form of Hilbert’s integral inequality. To further understand the theory of this field and cite some useful related papers, please see Yang’s book [13]. Recently, Hong et al. [14] gave a new half-discrete multidimensional inequality involving one multiple upper limit function as an application.
In this article, following the idea of [7,8], by means of real analysis, the way of introduced parameters and the transfer formulas, two new multidimensional Hilbert-type integral inequalities with the nonhomogeneous kernel as H ( | | x | | α λ 1 | | y | | β λ 2 ) ( λ 1 , λ 2 0 ) are given, which are some new extensions of the Hilbert-type integral inequalities in the two-dimensional case. Some equivalent statements of the best possible constant factor and a few parameters related to the new inequalities are provided. Furthermore, two corollaries regard the kernel, represented as k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) ( λ 1 , λ 2 0 ) , are considered, and some new inequalities in a few particular parameters are obtained.

2. Some Lemmas

In what follows, we assume that i 0 , j 0 N : = { 1 , 2 , } , p > 1 , 1 p + 1 q = 1 , σ 1 , σ   R : = ( - , ) ,   σ ^ : = σ 1 p + σ q ,
λ 1 , λ 2 0 , α , β R + : = ( 0 , ) ,                                                                                                                                                                                                   | | x | | α : = ( i = 1 i 0 | x i | α ) 1 α ( x = ( x 1 , , x i 0 ) R i 0 ) , | | y | | β : = ( j = 1 j 0 | y j | β ) 1 β ( y = ( y 1 , , y j 0 ) R j 0 ) .
Two functions f ( x ) , g ( y ) 0 , satisfying
0 < R + i 0 | | x | | α p ( i 0 λ 1 σ ^ ) i 0 f p ( x ) d x < 0   a n d   0 < R + j 0 | | y | | β q ( j 0 λ 2 σ ^ ) j 0   g q ( y ) d y < .
We also suppose that H ( u ) is a nonnegative measurable function in R + , such that for any η R ,
K ( η ) : = 0 H ( u ) u η 1 d u > 0 ,
which means that there exists a positive constant T > 1 , satisfying 0 T H ( u ) u η 1 d u > 0 .
If M > 0 ,   ψ ( u )   ( u > 0 ) is a nonnegative measurable function, then the following transfer formula was provided (cf. [2], (9.3.3)):
{ x R + i 0 ; 0 < i = 1 i 0 ( x i M ) α 1 } ψ ( i = 1 i 0 ( x i M ) α ) d x 1 d x i 0 = M i 0 Γ i 0 ( 1 α ) α i 0 Γ ( i 0 α ) 0 1 ψ ( u ) u i 0 α 1 d u .
In particular, (i) in view of | | x | | α = M [ i = 1 i 0 ( x i M ) α ] 1 α , by (4), we have
R + i 0 φ ( | | x | | α ) d x = lim M { x R + i 0 ; 0 < i = 1 i 0 ( x i M ) α 1 } φ ( M [ i = 1 i 0 ( x i M ) α ] 1 α ) d x 1 d x i 0
= lim M M i 0 Γ i 0 ( 1 α ) α i 0 Γ ( i 0 α ) 0 1 φ ( M u 1 α ) u i 0 α 1 d u = v = M u 1 α Γ i 0 ( 1 α ) α i 0 1 Γ ( i 0 α ) 0 φ ( v ) v i 0 1 d v ;
(ii) for ψ ( u ) = φ ( M u 1 α ) = 0 . u > 1 M α , by (4), we find
{ x R + i 0 , | | x | | α 1 } φ ( | | x | | α ) d x = M i 0 Γ i 0 ( 1 α ) α i 0 Γ ( i 0 α ) 0 1 M α φ ( M u 1 α ) u i 0 α 1 d u = Γ i 0 ( 1 α ) α i 0 1 Γ ( i 0 α ) 0 1 φ ( v ) v i 0 1 d v ;
(iii) for ψ ( u ) = φ ( M u 1 α ) = 0 . u < 1 M α , by (4), we have
{ x R + i 0 , | | x | | α 1 } φ ( | | x | | α ) d x = lim M M i 0 Γ i 0 ( 1 α ) α i 0 Γ ( i 0 α ) 1 M α 1 φ ( M u 1 α ) u i 0 α 1 d u = Γ i 0 ( 1 α ) α i 0 1 Γ ( i 0 α ) 1 φ ( v ) v i 0 1 d v .
For given the main results, we obtain the following weight functions:
Lemma 1.
Setting L α ( i 0 ) : = Γ i 0 ( 1 / α ) α i 0 1 Γ ( i 0 / α ) and L β ( j 0 ) : = Γ j 0 ( 1 / β ) β j 0 1 Γ ( j 0 / β ) , we have the following expressions of the weight functions:
ω ( σ , y ) : = R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) | | x | | α λ 1 σ i 0 d x = L α ( i 0 ) K ( σ ) | λ 1 | | | y | | β λ 2 σ (   y R + j 0 ) ,
ϖ ( σ 1 , x ) : = R + j 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) | | y | | β λ 2 σ 1 j 0 d y = L β ( j 0 ) K ( σ 1 ) | λ 2 | | | x | | α λ 1 σ 1   ( x R + i 0 ) .
Proof. 
By (5), for M > 0 , we have
ω ( σ , y ) = lim M M λ 1 σ i 0 { x R + i 0 ; 0 < i = 1 i 0 ( x i M ) α 1 } H ( M λ 1 [ i = 1 i 0 ( x i M ) α ] λ 1 α | | y | | β λ 2 ) × [ i = 1 i 0 ( x i M ) α ] λ 1 σ i 0 α d x 1 d x i 0
= lim M M i 0 Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) M λ 1 σ i 0 0 1 H ( M λ 1 u λ 1 α | | y | | β λ 2 ) u λ 1 σ i 0 α u i 0 α 1 d u = lim M Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) M λ 1 σ 0 1 H ( M λ 1 | | y | | β λ 2 u λ 1 α ) u λ 1 σ α 1 d u .                                
Setting v = M λ 1 | | y | | β λ 2 u λ 1 α in the above integral, for λ 1 > 0 , we obtain
ω ( σ , y ) = Γ i 0 ( 1 / α ) | λ 1 | α i 0 1 Γ ( i 0 / α ) | | y | | β λ 2 σ 0 H ( v ) v σ 1 d v ,
namely, (8) follows. For λ 1 < 0 , by (10), we still can obtain (8). In the same way, for λ 2 0 , we obtain (9).
This proves the lemma. □
Lemma 2.
For b R , we have the expressions as follows:
L 1 : = { x R + i 0 , | | x | | α 1 } | | x | | α b i 0 d x = 1 b L α ( i 0 ) , b > 0 , , b 0 ,
L 2 : = { x R + i 0 , | | x | | α 1 } | | x | | α b i 0 d x = 1 b L α ( i 0 ) , b > 0 , , b 0 .
Proof. 
By (6), for M > 0 , we have
L 1 = { x R + i 0 , i = 1 i 0 ( x i M ) α 1 M α } [ i = 1 i 0 ( x i M ) α ] b i 0 α M b i 0 d x 1 d x i 0         = lim M M i 0 Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) M b i 0 0 1 M α u b i 0 α u i 0 α 1 d u = lim M M b Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) 0 1 M α u b α 1 d u .
For b > 0 , we find L 1 = 1 b L α ( i 0 ) ; for b 0 , it follows that L 1 = . Hence, (11) follows.
In the same way, by (7), for M > 0 , we have
L 2 = { x R + i 0 , i = 1 i 0 ( x i M ) α 1 M α } [ i = 1 i 0 ( x i M ) α ] b i 0 α M b i 0 d x 1 d x i 0               = lim M M i 0 Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) M b i 0 1 M α 1 u b i 0 α u i 0 α 1 d u = lim M M b Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) 1 M α 1 u b α 1 d u .
For b > 0 , we find L 2 = 1 b L α ( i 0 ) ; for b 0 , it follows that L 2 = . Hence, we have (12).
This proves the lemma. □
In view of (6) and (7), we give the following expressions:
Lemma 3.
(i) If σ 1 > σ , then for 0 < ε < σ 1 σ , we have
I ˜ ε : = ε { x R + i 0 ; | | x | | α λ 1 1 } | | x | | α λ 1 ( σ 1 ε p ) i 0 { y R + j 0 ; | | y | | β λ 2 1 } H ( | | x | | α λ 1 | | y | | β λ 2 ) | | y | | β λ 2 ( σ + ε q ) j 0 d y d x = ;
(ii) If σ 1 < σ , then for 0 < ε < σ σ 1 , we have
I ^ ε : = ε { y R + j 0 ; | | y | | β λ 2 1 } | | y | | β λ 2 ( σ 1 ε q ) j 0 { x R + i 0 ; | | x | | α λ 1 1 } H ( | | x | | α λ 1 | | y | | β λ 2 ) | | x | | α λ 1 ( σ + ε p ) i 0 d y d x = ;
(iii) If σ 1 = σ (in (13)), then
I ε : = ε { x R + i 0 ; | | x | | α λ 1 1 } | | x | | α λ 1 ( σ ε p ) i 0 { y R + j 0 ; | | y | | β λ 2 1 } H ( | | x | | α λ 1 | | y | | β λ 2 ) | | y | | β λ 2 ( σ + ε q ) j 0 d y d x L α ( i 0 ) L β ( j 0 ) K ( σ ) | λ 1 λ 2 | + o ( 1 ) ( ε 0 + ) .
Proof. 
(i) By (6), for M , λ 2 > 0 , we have
h ( | | x | | α λ 1 ) : = | | x | | α λ 1 ( σ 1 + ε q ) { y R + j 0 ; | | y | | β λ 2 1 } H ( | | x | | α λ 1 | | y | | β λ 2 ) | | y | | β λ 2 ( σ + ε q ) j 0 d y = | | x | | α λ 1 ( σ 1 + ε q ) { y R + j 0 ; 0 < j = 1 j 0 ( y j M ) β M β } H ( | | x | | α λ 1 M λ 2 [ j = 1 j 0 ( y j M ) β ] λ 2 β )               × M λ 2 ( σ + ε q ) j 0 [ j = 1 j 0 ( y j M ) β ] 1 β [ λ 2 ( σ + ε q ) j 0 ] d y 1 d y j 0 = | | x | | α λ 1 ( σ 1 + ε q ) lim M M j 0 Γ j 0 ( 1 / β ) β j 0 Γ ( j 0 / β ) 0 M β H ( | | x | | α λ 1 M λ 2 u λ 2 β ) M λ 2 ( σ + ε q ) j 0 u 1 β [ λ 2 ( σ + ε q ) j 0 ] u j 0 β 1 d u = | | x | | α λ 1 ( σ 1 + ε q ) lim M M λ ( σ + ε q ) 2 Γ j 0 ( 1 / β ) β j 0 Γ ( j 0 / β ) 0 M β H ( | | x | | α λ 1 M λ 2 u λ 2 β ) u 1 β λ 2 ( σ + ε q ) 1 d u .
Setting v = | | x | | α λ 1 M λ 2 u λ 2 β in the above expression, in view of λ 2 > 0 , it follows that
h ( | | x | | α λ 1 ) = 1 λ 2 L β ( j 0 ) | | x | | α λ 1 ( σ 1 σ ) 0 | | x | | α λ 1 H ( v ) v ( σ + ε q ) 1 d v .
For λ 2 < 0 , by (7), we obtain
h ( | | x | | α λ 1 ) = | | x | | α λ 1 ( σ + 1 ε q ) { y R + j 0 ; | | y | | β 1 } H ( | | x | | α λ 1 | | y | | β λ 2 ) | | y | | β λ 2 ( σ + ε q ) j 0 d y = | | x | | α λ 1 ( σ 1 + ε q ) { y R + j 0 ; j = 1 j 0 ( y j M ) β M β } H ( | | x | | α λ 1 M λ 2 [ j = 1 j 0 ( y j M ) β ] λ 2 β )               × M λ 2 ( σ + ε q ) j 0 [ j = 1 j 0 ( y j M ) β ] 1 β [ λ 2 ( σ + ε q ) j 0 ] d y 1 d y j 0 = | | x | | α λ 1 ( σ 1 + ε q ) lim M M j 0 Γ j 0 ( 1 / β ) β j 0 Γ ( j 0 / β ) M β 1 H ( | | x | | α λ 1 M λ 2 u λ 2 β ) M λ 2 ( σ + ε q ) j 0 u 1 β [ λ 2 ( σ + ε q ) j 0 ] u j 0 β 1 d u = | | x | | α λ 1 ( σ 1 + ε q ) lim M M λ ( σ + ε q ) 2 Γ j 0 ( 1 / β ) β j 0 Γ ( j 0 / β ) M β 1 H ( | | x | | α λ 1 M λ 2 u λ 2 β ) u 1 β λ 2 ( σ + ε q ) 1 d u .
Setting v = | | x | | α λ 1 M λ 2 u λ 2 β in the above expression, in view of λ 2 < 0 , it follows that
h ( | | x | | α λ 1 ) = 1 λ 2 L β ( j 0 ) | | x | | α λ 1 ( σ 1 σ ) 0 | | x | | α λ 1 H ( v ) v ( σ + ε q ) 1 d v .
In view of (16) and (17), we have
I ˜ ε = ε { x R + i 0 ; | | x | | α λ 1 1 } | | x | | α λ 1 ε i 0 h ( | | x | | α λ 1 ) d x
= ε | λ 2 | L β ( j 0 ) { x R + i 0 ; | | x | | α λ 1 1 } | | x | | α λ 1 ( σ σ 1 + ε ) i 0 [ 0 | | x | | α λ 1 H ( v ) v ( σ + ε q ) 1 d v ] d x .
For λ 1 > 0 by (7), we have for M > 0 that
I ˜ ε = ε | λ 2 | L β ( j 0 ) { x R + i 0 ; i = 1 i 0 ( x i M ) α M α } M λ 1 ( σ σ 1 + ε ) i 0 [ i = 1 i 0 ( x i M ) α ] λ 1 ( σ σ 1 + ε ) i 0 α × [ 0 M λ 1 [ i = 1 i 0 ( x i M ) α ] λ 1 α H ( v ) v ( σ + ε q ) 1 d v ] d x 1 d x i 0
= ε | λ 2 | L β ( j 0 ) lim M M i 0 Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) M α 1 M λ 1 ( σ σ 1 + ε ) i 0 u λ 1 ( σ σ 1 + ε ) i 0 α [ 0 M λ 1 u λ 1 α H ( v ) v ( σ + ε q ) 1 d v ] u i 0 α 1 d u
= ε | λ 2 | L β ( j 0 ) lim M M λ 1 ( σ σ 1 + ε ) i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) M α 1 u λ 1 ( σ σ 1 + ε ) α 1 [ 0 M λ 1 u λ 1 α H ( v ) v ( σ + ε q ) 1 d v ] d u = t = M λ 1 u λ 1 α ε | λ 1 λ 2 | L β ( j 0 ) L α ( i 0 ) 1 t ( σ σ 1 + ε ) 1 [ 0 t H ( v ) v ( σ + ε q ) 1 d v ] d t .
For λ 1 < 0 , M > 0 , by (7), we still have
I ˜ ε = ε | λ 2 | L β ( j 0 ) { x R + i 0 ; 0 < i = 1 i 0 ( x i M ) α M α } M λ 1 ( σ σ 1 + ε ) i 0 [ i = 1 i 0 ( x i M ) α ] λ 1 ( σ σ 1 + ε ) i 0 α
× [ 0 M λ 1 [ i = 1 i 0 ( x i M ) α ] λ 1 α H ( v ) v ( σ + ε q ) 1 d v ] d x 1 d x i 0
= ε | λ 2 | L β ( j 0 ) lim M M i 0 Γ i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) 0 M α M λ 1 ( σ σ 1 + ε ) i 0 u λ 1 ( σ σ 1 + ε ) i 0 α [ 0 M λ 1 u λ 1 α H ( v ) v ( σ + ε q ) 1 d v ] u i 0 α 1 d u
= ε | λ 2 | L β ( j 0 ) lim M M λ 1 ( σ σ 1 + ε ) i 0 ( 1 / α ) α i 0 Γ ( i 0 / α ) 0 M α u λ 1 ε α 1 [ 0 M λ 1 u λ 1 α H ( v ) v ( σ + ε q ) 1 d v ] d u = t = M λ 1 u λ 1 α ε | λ 1 λ 2 | L β ( j 0 ) L α ( i 0 ) 1 t ( σ σ 1 + ε ) 1 [ 0 t H ( v ) v ( σ + ε q ) 1 d v ] d t .
Hence, we have
I ˜ ε ε | λ 1 λ 2 | L β ( j 0 ) L α ( i 0 ) T t ( σ σ 1 + ε ) 1 d t 0 T H ( v ) v ( σ + ε q ) 1 d v ( T > 1 ) ,
Satisfying 0 T H ( v ) v ( σ + ε q ) 1 d v > 0 . For σ σ 1 + ε < 0 , we have T t ( σ σ 1 + ε ) 1 d t = , in view of (18), we have I ˜ ε = . Hence, we have (13).
(ii) In the same way, by the symmetry, we have (14).
(iii) If σ 1 = σ , then in view of (18), by Fubini theorem and Fatou lemma (cf. [15]), we obtain
lim ε 0 + I ε = lim ε 0 + ε | λ 1 λ 2 | L β ( j 0 ) L α ( i 0 )                                           × { 1 t ε 1 [ 0 1 H ( v ) v ( σ + ε q ) 1 d v ] d t + 1 t ε 1 [ 1 t H ( v ) v ( σ + ε q ) 1 d v ] d t }
= lim ε 0 + ε | λ 1 λ 2 | L β ( j 0 ) L α ( i 0 ) [ 1 ε 0 1 H ( v ) v ( σ + ε q ) 1 d v + 1 ( v t ε 1 d t ) H ( v ) v ( σ + ε q ) 1 d v ] = 1 | λ 1 λ 2 | L β ( j 0 ) L α ( i 0 ) lim ε 0 + [ 0 1 H ( v ) v ( σ + ε q ) 1 d v + 1 H ( v ) v ( σ ε p ) 1 d v ]
1 | λ 1 λ 2 | L β ( j 0 ) L α ( i 0 ) ( 0 1 lim ¯ ε 0 + H ( v ) v σ + ε q 1 d v + 1 lim ¯ ε 0 + H ( v ) v σ ε p 1 d v ) = L α ( i 0 ) L β ( j 0 ) K ( σ ) | λ 1 λ 2 | ,
namely, (15) follows.
The lemma is proved. □
By Lemma 1, we obtain the following main inequality:
Lemma 4.
If K ( η ) R + ( η { σ 1 , σ } ) , then we have the following inequality
I : = R + j 0 R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) f ( x ) g ( y ) d x d y < ( L β ( j 0 ) K ( σ 1 ) | λ 2 | ) 1 p ( L α ( i 0 ) K ( σ ) | λ 1 | ) 1 q × [ R + i 0 | | x | | α p ( i 0 λ 1 σ ^ ) i 0 f p ( x ) d x ] 1 p [ R + j 0 | | y | | β q ( j 0 λ 2 σ ^ ) j 0 g q ( y ) d y ] 1 q .
Proof. 
By Hölder’s inequality (cf. [16]), we have
I = R + j 0 R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) [ | | y | | β ( λ 2 σ 1 j 0 ) / p | | x | | α ( λ 1 σ i 0 ) / q f ( x ) ] [ | | x | | α ( λ 1 σ i 0 ) / q | | y | | β ( λ 2 σ 1 j 0 ) / p g ( y ) ] d x d y         { R + i 0 [ R + j 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) | | y | | β λ 2 σ 1 j 0 | | x | | α ( λ 1 σ i 0 ) ( p 1 ) d y ] f p ( x ) d x } 1 p
                  × { R + j 0 [ R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) | | x | | α λ 1 σ i 0 | | y | | β ( λ 2 σ 1 j 0 ) ( q 1 ) d x ] g q ( y ) d y } 1 q = [ R + i 0 ϖ ( σ 1 , x ) | | x | | α ( p 1 ) ( i 0 λ 1 σ ) f p ( x ) d x ] 1 p
× [ R + j 0 ω ( σ , y ) | | y | | β ( q 1 ) ( j 0 λ 2 σ 1 ) g q ( y ) d y ] 1 q .
If (20) pertain to the form of equality, then (cf. [16]), there exist constants A and B , satisfying they are not both zero, and
A | | y | | β λ 2 σ 1 j 0 | | x | | α ( λ 1 σ i 0 ) ( p 1 ) f p ( x ) = B | | x | | α λ 1 σ i 0 | | y | | β ( λ 2 σ 1 j 0 ) ( q 1 ) g q ( y ) a . e . i n R + i 0 × R + j 0 .
Assuming that A 0 , there exists a y R + j 0 , such that
| | x | | α p ( i 0 λ 1 σ ^ ) i 0 f p ( x ) = B g q ( y ) A | | y | | β q ( λ 2 σ 1 j 0 ) | | x | | α λ 1 ( σ σ 1 ) i 0 a . e . i n R + i 0 ,
which contradicts that
0 < R + i 0 | | x | | α p [ i 0 λ 1 σ ^ ] i 0 f p ( x ) d x < .
In fact, by (11) and (12), for b = λ 1 ( σ σ 1 ) R , we have
R + i 0 | | x | | α b i 0 d x = { x R + i 0 ; | | x | | α 1 } | | x | | α b i 0 d x + { x R + i 0 ; | | x | | α 1 } | | x | | α b i 0 d x = .
By (8) and (9), we obtain (19).
This proves the lemma. □
Remark 1 
(i) In particular, for σ = 1 σ in (19), we have σ ^ = σ ,
0 < R + i 0 | | x | | α p ( i 0 λ 1 σ ) i 0 f p ( x ) d x < , 0 < R + j 0 | | y | | β q ( j 0 λ 2 σ ) j 0 g q ( y ) d y < ,
and the following:
                                                                            I = R + j 0 R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) f ( x ) g ( y ) d x d y < ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) × [ R + i 0 | | x | | α p ( i 0 λ 1 σ ) i 0 f p ( x ) d x ] 1 p [ R + j 0 | | y | | β q ( j 0 λ 2 σ ) j 0 g q ( y ) d y ] 1 q .
(ii) By Hölder’s inequality (cf. [16]), we still have
0 < K ( σ ^ ) = K ( σ 1 p + σ q ) = 0 H ( u ) u σ 1 p + σ q 1 d u       = 0 H ( u ) ( u σ 1 1 p ) ( u σ 1 q ) d u
( 0 H ( u ) u σ 1 1 d u ) 1 p ( 0 H ( u ) u σ 1 d u ) 1 q = ( K ( σ 1 ) ) 1 p ( K ( σ ) ) 1 q < .
Now, we use Lemma 2 and Lemma 3 to show the best value in the key inequality (21).
Lemma 5.
For K ( σ ) R + , ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) in (21) is the best value.
Proof. 
For any ε > 0 , we set
f ε ( x ) : = 0 , | | x | | α λ 1 < 1 , | | x | | α λ 1 ( σ ε p ) i 0 , | | x | | α λ 1 1 , g ε ( y ) : = | | y | | β λ 2 ( σ + ε q ) j 0 , | | y | | β λ 2 1 , 0 , | | y | | β λ 2 > 1 .
By (11) and (12), we have
x R + i 0 | | x | | α p ( i 0 λ 1 σ ) i 0 f ε p ( x ) d x = { x R + i 0 ; | | x | | α λ 1 1 } | | x | | α λ 1 ε i 0 d x = { x R + i 0 ; | | x | | α 1 } | | x | | α | λ 1 | ε i 0 d x , λ 1 < 0 { x R + i 0 ; | | x | | δ 1 } | | x | | α | λ 1 | ε i 0 d x , λ 1 > 0 = 1 | λ | 1 ε L α ( i 0 ) ,
R + j 0 | | y | | β q ( j 0 σ ) j 0 g ε q ( y ) d y = { y R + j 0 ; | | y | | β λ 2 1 } | | y | | β λ 2 ε j 0 d y = 1 | λ 2 | ε L β ( j 0 ) .
If there exists a positive constant
M ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) ,
such that (21) is valid as we replace ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) by M , then in particular, by (15), we have
L α ( i 0 ) L β ( j 0 ) K ( σ ) | λ 1 λ 2 | + o ( 1 ) I ε = ε R + j 0 R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) f ε ( x ) g ( y ) ε d x d y
< ε M [ R + i 0 | | x | | α p ( i 0 λ 1 σ ) i 0 f ε p ( x ) d x ] 1 p [ R + j 0 | | y | | β q ( j 0 λ 2 σ ) j 0 g ε q ( y ) d y ] 1 q = M ( L α ( i 0 ) 1 | λ 1 | ) 1 p ( L β ( j 0 ) 1 | λ 2 | ) 1 q .
For ε 0 + , it follows that
L α ( i 0 ) L β ( j 0 ) K ( σ ) | λ 1 λ 2 | M ( L α ( i 0 ) 1 | λ 1 | ) 1 p ( L β ( j 0 ) 1 | λ 2 | ) 1 q .
We find that ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) M , which follows that
M = ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( j 0 ) 1 | λ 1 | ) 1 q K ( σ )
is the best possible constant factor of (21).
This proves the lemma. □

3. Main Results and Two Corollaries

Theorem 1.
For p > 1 , 1 p + 1 q = 1 , if there exists M ( 0 ) , satisfying the following inequality holds:
      I = R + j 0 R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) f ( x ) g ( y ) d x d y M [ R + i 0 | | x | | α p ( i 0 λ 1 σ 1 ) i 0 f p ( x ) d x ] 1 p [ R + j 0 | | y | | β q ( j 0 λ 2 σ ) j 0 g q ( y ) d y ] 1 q ,
then we have σ 1 = σ and M > 0 . Hence, K ( σ ) R + and
( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) ( ( 0 , M ] )
is the best value of (24) (for σ 1 = σ ).
Proof. 
If σ 1 < σ , then for any ε > 0 , we set
f ˜ ε ( x ) : = 0 , | | x | | α λ 1 < 1 , | | x | | α λ ( σ 1 ε p ) 1 i 0 , | | x | | α λ 1 1 , g ˜ ε ( y ) : = | | y | | β λ 2 ( σ + ε q ) j 0 , | | y | | β λ 2 1 , 0 , | | y | | β λ 2 > 1 .
By (8), (19) and (18), we have
= I ˜ ε = ε R + j 0 R + i 0 H ( | | x | | α λ 1 | | y | | β λ 2 ) f ˜ ε ( x ) g ˜ ε ( y ) d x d y
ε M [ R + i 0 | | x | | α p ( i 0 λ 1 σ 1 ) i 0 f ˜ ε p ( x ) d x ] 1 p [ R + j 0 | | y | | β q ( j 0 λ 2 σ ) j 0 g ˜ ε q ( y ) d y ] 1 q = ε M ( { x R + i 0 ; | | x | | α λ 1 1 } | | x | | α λ 1 ε i 0 d x ) 1 p ( { y R + j 0 ; | | y | | β λ 2 1 } | | y | | β λ 2 ε j 0 d y ) 1 q < ,
which is a contradiction.
If σ 1 < σ , then for any ε > 0 , we set
f ^ ε ( x ) : = | | x | | α λ 1 ( σ 1 + ε p ) i 0 , | | x | | α λ 1 1 , 0 , | | x | | α λ 1 > 1 , g ^ ε ( y ) : = 0 , | | y | | β λ 2 < 1 , | | y | | β λ 2 ( σ ε q ) j 0 , | | y | | β λ 2 1 .
By (9), (19) and (18), in the same way, we still obtain a contradiction.
Hence, we have σ 1 = σ .
For σ 1 = σ in (19), replacing f ( x ) ( r e s p . g ( y ) ) by f ε ( x ) ( r e s p . g ε ( y ) ) in Lemma 5 and following the proof of Lemma 5, for K ( σ ) > 0 , we still find
0 < ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) M < ,
which follows that
0 < K ( σ ) M ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q < .
By Lemma 5, ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) ( ( 0 , M ] ) is the best possible constant of (24) (for σ 1 = σ ).
This proves the theorem. □
Theorem 2.
For K ( η ) R + ( η { σ , σ 1 } ) , we have the following equivalent statements:
(i) Both ( K ( σ 1 ) ) 1 p ( K ( σ ) ) 1 q and K ( σ 1 p + σ q ) are independent of p , q ;
( ii )   ( K ( σ 1 ) ) 1 p ( K ( σ ) ) 1 q K ( σ 1 p + σ q ) ;
(iii) σ 1 = σ ;
(iv) The constant factor ( L β ( j 0 ) K ( σ 1 ) | λ 2 | ) 1 p ( L α ( i 0 ) K ( σ ) | λ 1 | ) 1 q in (19) is the best value;
(v) there exists a constant M , such that (24) holds.
Proof. 
(ii) (iii). By (25), it follows that (22) protains the form of equality. Then, there exist A and B , satisfying they are not both zero and A u σ 1 1 = B u σ 1 a . e .   i n   R + (cf. [16]). Supposing that A 0 , we have u σ 1 σ = B A a . e .   i n   R + , and then σ 1 σ = 0 , namely, σ 1 = σ .
(iii) (iv). In view of Lemma 5, we obtain (iv).
(iv) (ii). If the constant factor ( L β ( j 0 ) K ( σ 1 ) | λ 2 | ) 1 p ( L α ( i 0 ) K ( σ ) | λ 1 | ) 1 q in (19) is the best value, then by (21) (for σ = σ ^ ), we have
( L β ( j 0 ) K ( σ 1 ) | λ 2 | ) 1 p ( L α ( i 0 ) K ( σ ) | λ 1 | ) 1 q ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ^ ) R + ,
namely, (25) follows. Hence, it follows that (ii) (iii) (iv).
(i) (ii). By (i), we find
( K ( σ 1 ) ) 1 p ( K ( σ ) ) 1 q = lim p lim q 1 ( K ( σ 1 ) ) 1 p ( K ( σ ) ) 1 q = K ( σ ) ,
and then, in view of Fatou lemma (cf. [15]), we have
( K ( σ 1 ) ) 1 p ( K ( σ ) ) 1 q = K ( σ ) = K ( lim ¯ p σ 1 σ p + σ ) lim ¯ p K ( σ 1 σ p + σ ) = K ( σ 1 p + σ q ) ,
namely, (25) follows.
(iii) (i). For σ 1 = σ , both ( K ( σ 1 ) ) 1 p ( K ( σ ) ) 1 q and K ( σ 1 p + σ q ) equal K ( σ ) , which are independent of p , q . Hence, we have (i) (ii) (iii) (iv).
(v) (iii). By Theorem 1, for K ( η ) R + ( η = σ , σ ) 1 , we still have σ 1 = σ .
(iii) (v). If σ 1 = σ , then by Lemma 5, we set M ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K ( σ ) , and then (24) holds. Hence, we have (iii) (v).
Therefore, we have (i) (ii) (iii) (iv) (v).
This proved that theorem. □
Replacing λ 1 to λ 1 in Theorems 1 and 2, setting H ( v ) = k λ ( 1 , v ) , where k λ ( u , v ) is a homogeneous function of degree λ , such that k λ ( t u , t v ) = t λ k λ ( u , v ) ( t , u , v > 0 ) , and
K λ ( η ) : = 0 k λ ( 1 , u ) u η 1 d u > 0 ( η = λ μ , σ ) .
For μ = λ σ 1 , σ ^ = λ μ p + σ q , μ ^ = λ σ ^ = λ σ q + μ p , replacing | | x | | α λ 1 λ f ( x ) to f ( x ) , by calculation, we have
Corollary 1.
If there exists M ( 0 ) , such that the following inequality holds:
      R + j 0 R + i 0 k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) f ( x ) g ( y ) d x d y M [ R + i 0 | | x | | α p ( i 0 λ 1 μ ) i 0 f p ( x ) d x ] 1 p [ R + j 0 | | y | | β q ( j 0 λ 2 σ ) j 0 g q ( y ) d y ] 1 q ,
then we have μ + σ = λ , and ( L β ( j 0 ) 1 | λ 2 | ) 1 p ( L α ( i 0 ) 1 | λ 1 | ) 1 q K λ ( σ ) ( ( 0 , M ] ) is the best possible constant in (26) (for μ + σ = λ ).
Corollary 2.
For K λ ( η ) R + ( η { σ , λ μ } ) , the following statements are equivalent:
(I) Both ( K λ ( λ μ ) ) 1 p ( K λ ( σ ) ) 1 q and K λ ( λ μ p + σ q ) are independent of p , q ;
( II )   ( K λ ( λ μ ) ) 1 p ( K λ ( σ ) ) 1 q K λ ( λ μ p + σ q ) ;
(III) μ + σ = λ ;
(IV) the constant factor ( L β ( j 0 ) K λ ( λ μ ) | λ 2 | ) 1 p ( L α ( i 0 ) K λ ( σ ) | λ 1 | ) 1 q in the following inequality
      R + j 0 R + i 0 k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) f ( x ) g ( y ) d x d y < ( L β ( j 0 ) K λ ( λ μ ) | λ 2 | ) 1 p ( L α ( i 0 ) K λ ( σ ) | λ 1 | ) 1 q                       × [ R + i 0 | | x | | α p ( i 0 λ 1 μ ^ ) i 0 f p ( x ) d x ] 1 p [ R + j 0 | | y | | β q ( j 0 λ 2 σ ^ ) j 0 g q ( y ) d y ] 1 q ,
is the best possible;
(V) there exists a constant M , such that inequality (26) holds.
Example 1.
Setting h ( u ) = k ( 1 , u ) λ = 1 ( 1 + u ) λ ( λ > 0 ; u > 0 ) , we find
K ( η ) = K ( η ) λ = 0 u η 1 ( 1 + u ) λ d u = B ( η , λ η ) R + ( 0 < η < λ ) H ( | | x | | α λ 1 | | y | | β λ 2 ) = 1 ( 1 + | | x | | α λ 1 | | y | | β λ 2 ) λ , k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) = 1 ( | | x | | α λ 1 + | | y | | β λ 2 ) λ .
Example 2.
(i) For λ , γ > 0 , we set H ( u ) = k λ ( 1 , u ) = 1 u γ 1 u λ + γ ( u > 0 ) . We find
H ( | | x | | α λ 1 | | y | | β λ 2 ) = 1 | | x | | α γ λ 1 | | y | | β γ λ 2 1 | | x | | α ( λ + γ ) λ 1 | | y | | β ( λ + γ ) λ 2 , k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) = | | x | | α γ λ 1 | | y | | β γ λ 2 | | x | | α ( λ + γ ) λ 1 | | y | | β ( λ + γ ) λ 2 .
In particular, for γ = λ , we have
H ( | | x | | α λ 1 | | y | | β λ 2 ) = 1 1 + | | x | | α λ λ 1 | | y | | β λ λ 2 , k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) = 1 | | x | | α λ λ 1 + | | y | | β λ λ 2 .
(ii) In view of (cf. [17]):
cot x = 1 x + k = 1 ( 1 x π k + 1 x + π k ) ( x ( 0 , π ) ) ,
for b ( 0 , 1 ) , by Lebesgue term by term theorem (cf. [14], we find
A b : = 0 u b 1 1 u d u = 0 1 u b 1 1 u d u + 1 u b 1 1 u d u = 0 1 u b 1 1 u d u 0 1 v b 1 v d v = 0 1 u b 1 u b 1 u d u = 0 1 k = 0 ( u k + b 1 u k b ) d u = k = 0 0 1 ( u k + b 1 u k b ) d u         = k = 0 ( 1 k + b 1 k + 1 b ) = π [ 1 π b + k = 1 ( 1 π b π k + 1 π b + π k ) ]         = π cot π b R : = ( - , ) .
Note .
For b ( 0 , 1 2 ) , A b > 0 ; for b ( 1 2 , 1 ) , A b < 0 ; A 1 / 2 = 0 .
(iii) For η ( 0 , λ ) , by (ii), we obtain (cf. [18])
K ( η ) = K λ ( η ) : = 0 H ( u ) u η 1 d u = 0 1 u γ 1 u λ + γ u η 1 d u                               = v = u λ + γ 1 λ + γ 0 v η λ + γ 1 1 v d v 0 v η + γ λ + γ 1 1 v d v                           = π λ + γ cot ( π η λ + γ ) cot ( π ( η + γ ) λ + γ )                                     = π λ + γ cot ( π η λ + γ ) + cot ( π ( λ η ) λ + γ ) R + .
In particular, for γ = λ , we obtain
K ( η ) = K λ ( η ) = π 2 λ cot ( π η 2 λ ) + cot ( π ( λ η ) 2 λ ) = π λ sin ( π η λ ) .
We can use Examples 1 and 2 as the particular kernels to Theorems 1 and 2 and Corollaries 1 and 2.

4. Conclusions

In this article, following the idea of [7,8], by means of the technique of real analysis, the way of introduced parameters, and a few useful formulas, two new multidimensional Hilbert-type integral inequalities with the nonhomogeneous kernel as
H ( | | x | | α λ 1 | | y | | β λ 2 ) ( λ 1 , λ 20 )
are given in (19) and (24), which are some new extensions of the Hilbert-type integral inequalities in the two-dimensional case. Some equivalent statements related to the two inequalities, the best value and several parameters are provided in Theorem 2. Two corollaries about the homogeneous kernel as k λ ( | | x | | α λ 1 , | | y | | β λ 2 ) ( λ 1 , λ 20 ) are given in Corollaries 1 and 2, and some new inequalities in particular parameters are obtained in Examples 1 and 2.

Author Contributions

Investigation, Y.L.; Writing—original draft, B.Y.; Funding acquisition, Y.Z. All authors read and approved the final manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (No. 62166011) and the Innovation Key Project of Guangxi Province (No. 222068071). We are grateful for this help.

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
  2. Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
  3. Batbold, T.; Sawano, Y. Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces. Math. Inequal. Appl. 2017, 20, 263–283. [Google Scholar] [CrossRef]
  4. Adiyasuren, V.; Batbold, T.; Krnić, M. Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 2016, 10, 320–337. [Google Scholar] [CrossRef]
  5. Yang, B.C.; Krnić, M. A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequalities 2012, 6, 401–417. [Google Scholar]
  6. Chen, Q.; He, B.; Hong, Y.; Zhen, L. Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 2020, 7414861. [Google Scholar] [CrossRef]
  7. Krnić, M.; Pečarić, J. Extension of Hilbert’s inequality. J. Math. Anal. Appl. 2006, 324, 150–160. [Google Scholar] [CrossRef]
  8. Adiyasuren, V.; Batbold, T.; Azar, L.E. A new discrete Hilbert-type inequality involving partial sums. J. Inequalities Appl. 2019, 127, 2019. [Google Scholar] [CrossRef]
  9. Hong, Y.; Wen, Y. A necessary and Sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 2016, 37, 329–336. [Google Scholar]
  10. Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernel and applications. J. Jilin Univ. 2017, 55, 189–194. [Google Scholar]
  11. Burtseva, E.; Lundberg, S.; Persson, L.-E.; Samko, N. Multi-dimensional Hardy type inequalities in Holder spaces. J. Math. Inequalities 2018, 12, 719–729. [Google Scholar] [CrossRef]
  12. Batbold, T.; Azar, L.E. A new form of Hilbert integral inequality. J. Math. Inequalities 2018, 12, 379–390. [Google Scholar] [CrossRef]
  13. Yang, B.C.; Liao, J.Q. Parameterized Multidimensional Hilbert-Type Inequalities; Scientific Research Publishing: Irvine, CA, USA, 2020. [Google Scholar]
  14. Hong, Y.; Zhong, Y.R.; Yang, B.C. A more accurate half-discrete multidimensional Hilbert -type inequality involving one multiple upper limit function. Axioms 2023, 12, 211. [Google Scholar] [CrossRef]
  15. Kuang, J.C. Real and Functional Analysis (Continuation); Higher Education Press: Beijing, China, 2015; Volume 1. [Google Scholar]
  16. Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
  17. Faye Hajin Coyle, M. Calculus Course (Volume Second); Higher Education Press: Beijing, China, 2006; p. 397. [Google Scholar]
  18. You, M.F. On an Extension of the Discrete Hilbert Inequality and Applications. J. Wuhan Univ. 2021, 67, 179–184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Y.; Zhong, Y.; Yang, B. Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters. Axioms 2023, 12, 956. https://doi.org/10.3390/axioms12100956

AMA Style

Li Y, Zhong Y, Yang B. Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters. Axioms. 2023; 12(10):956. https://doi.org/10.3390/axioms12100956

Chicago/Turabian Style

Li, Yiyuan, Yanru Zhong, and Bicheng Yang. 2023. "Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters" Axioms 12, no. 10: 956. https://doi.org/10.3390/axioms12100956

APA Style

Li, Y., Zhong, Y., & Yang, B. (2023). Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters. Axioms, 12(10), 956. https://doi.org/10.3390/axioms12100956

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop