A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function
Abstract
:1. Introduction
2. Main Results
3. Applications in the Form of Hadamard-Type Inequalities
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications: A Contemporary Approach; Springer Science+Business Media, Inc.: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Udriste, C. Convex Functions and Optimization Methods on Riemannian Manifolds; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Asimow, L.; Ellis, A.J. Convexity Theory and Its Applications in Functional Analysis; Academic Press Inc.: Cambridge, MA, USA, 2014. [Google Scholar]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Budak, H.; Pehlivan, E. Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann–Liouville fractional integrals. AIMS Math. 2020, 5, 1960–1985. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 466, 1274–1291. [Google Scholar] [CrossRef]
- Habib, S.; Mubeen, S.; Naeem, M.N. Chebyshev type integral inequalities for generalized k-fractional conformable integrals. J. Inequal. Spec. Funct. 2018, 9, 53–65. [Google Scholar]
- Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 2019, 287. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Ozata, F. Grüss type inequalities for fractional integral operator involving the extended generalized Mittag–Leffler function. Appl. Comput. Math. 2020, 19, 402–414. [Google Scholar]
- Yan, T.; Farid, G.; Yasmeen, H.; Jung, C.Y. On Hadamard type fractional inequalities for Riemann–Liouville integrals via a generalized convexity. Fractal Fract. 2022, 6, 28. [Google Scholar] [CrossRef]
- He, C.Y.; Wang, Y.; Xi, B.Y.; Qi, F. Hermite-Hadamard type inequalities for (α,m)—HA and strongly (α,m)—HA convex functions. J. Nonlinear Sci. Appl. 2017, 10, 205–214. [Google Scholar] [CrossRef]
- Ion, D.A. Some estimates on the Hermite-Hadamard inequality through quasi convex functions. Ann. Univ. Craiova Math. Comp. Sci. Ser. 2007, 34, 82–87. [Google Scholar]
- Kwun, Y.C.; Saleem, M.S.; Ghafoor, M.; Nazeer, W.; Kang, S.M. Hermite Hadamard-type inequalities for functions whose derivatives are η convex via fractional integrals. J. Inequal. Appl. 2019, 2019, 44. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Akdemri, A.O.; Set, E. On (h − m) convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 2016, 8, 51–58. [Google Scholar]
- Set, E.; Sardari, M.; Ozdemir, M.E.; Rooin, J. On generalizations of the Hadamard inequality for (α,m)-convex functions. Kyungpook Math. J. 2012, 52, 307–317. [Google Scholar] [CrossRef]
- Zhuang, H.; Liu, W.; Park, J. Some quantum estimates of Hermite-Hadamard inequalities for quasi convex functions. Mathematics 2019, 7, 152. [Google Scholar] [CrossRef]
- Mittag–Leffler, G. Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris. 1903, 137, 554–558. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag–Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-type functions. Fractal Fract. 2020, 6, 54. [Google Scholar] [CrossRef]
- Kukushkin, M.V. On solvability of the Sonin–Abel equation in the weighted Lebesgue space. Fractal Fract. 2021, 5, 77. [Google Scholar] [CrossRef]
- Zhang, Y.; Farid, G.; Salleh, Z.; Ahmad, A. On a unified Mittag–Leffler function and associated fractional integral operator. Math. Probl. Eng. 2021, 2021, 6043769. [Google Scholar] [CrossRef]
- Zhou, S.S.; Farid, G.; Ahmad, A. Fractional versions of Minkowski-type integral inequalities via unified Mittag–Leffler function. Adv. Differ. Equ. 2022, 2022, 9. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Pandey, R.M. A study of some integral transforms on Q function. South East Asian J. Math. Math. Sci. 2020, 16, 99–110. [Google Scholar]
- Gao, T.; Farid, G.; Ahmad, A.; Luangboon, W.; Nonlaopon, K. Fractional Minkowski-Type integral inequalities via the unified generalized fractional integral operator. J. Funct. Spaces 2022, 2022, 2890981. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Farid, G.; Yasmeen, H.; Shah, F.A.; Jung, C.Y. Generalization of some fractional integral operator inequalities for convex functions via unified Mittag–Leffler function. Symmetry 2022, 14, 922. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farid, G.; Tariq, H.; Tawfiq, F.M.O.; Ro, J.-S.; Zainab, S. A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function. Axioms 2023, 12, 795. https://doi.org/10.3390/axioms12080795
Farid G, Tariq H, Tawfiq FMO, Ro J-S, Zainab S. A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function. Axioms. 2023; 12(8):795. https://doi.org/10.3390/axioms12080795
Chicago/Turabian StyleFarid, Ghulam, Hafsa Tariq, Ferdous M. O. Tawfiq, Jong-Suk Ro, and Saira Zainab. 2023. "A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function" Axioms 12, no. 8: 795. https://doi.org/10.3390/axioms12080795
APA StyleFarid, G., Tariq, H., Tawfiq, F. M. O., Ro, J. -S., & Zainab, S. (2023). A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function. Axioms, 12(8), 795. https://doi.org/10.3390/axioms12080795