You are currently viewing a new version of our website. To view the old version click .
Axioms
  • Article
  • Open Access

17 October 2023

Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps

College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
This article belongs to the Special Issue Current Research on Mathematical Inequalities II

Abstract

We shall present some more generalized and further refinements of reversed AM-GM operator inequalities for positive linear maps due to Xue’s and Ali’s publications.
MSC:
47A64; 47A30; 47B02

1. Introduction

Let m , M be scalars and I be the identity operator. B ( H ) denote all bounded linear operators acting on a Hilbert space ( H , · , · ) . In addition, A 0 means the operator A is positive. We say A B if A B 0 . A linear map Φ : B ( H ) B ( H ) is called positive (strictly positive) if Φ ( A ) 0 ( Φ ( A ) > 0 ) whenever A 0 ( A > 0 ), and Φ is said to be unital if Φ ( I ) = I .
If A , B B ( H ) are two positive operators, then the operator weighted arithmetic mean and geometric mean are defined as
A v B = ( 1 v ) A + v B and A v B = A 1 2 A 1 2 B A 1 2 v A 1 2
for v [ 0 , 1 ] , respectively. Denoted A v B by A B and A v B by A B when v = 1 2 for brevity. The Kantorovich constant and Specht’s ratio are defined by K ( h , 2 ) = ( h + 1 ) 2 4 h and S ( h ) = h 1 h 1 e ln h 1 h 1 when h > 0 . If there is no special explanations, we always default to a , b > 0 and v [ 0 , 1 ] in this paper.
It is well known that the famous Young’s inequality reads
a 1 v b v ( 1 v ) a + v b .
Furuichi [1] improved (1) with Specht’s ratio
S b a r a 1 v b v ( 1 v ) a + v b ,
where r = min { v , 1 v } . Zuo et al. [2] further improved (2) as
S b a r a 1 v b v K r b a a 1 v b v ( 1 v ) a + v b .
Sababheh and Moslehian [3] gave a refinement of (3) in the following form
K h 2 N , 2 β N ( v ) a 1 v b v + S N ( v ; b , a ) ( 1 v ) a + v b ,
where N N + , h = a b , β N ( v ) = min { α N ( v ) , 1 α N ( v ) } with α N ( v ) = 1 + [ 2 N v ] 2 N v and
S N ( v ; b , a ) = j = 1 N s j ( v ) a 2 j 1 k j ( v ) b k j ( v ) 2 j b k j ( v ) + 1 a 2 j 1 k j ( v ) 1 2 j 2
for j = 1 , 2 , , N , k j ( v ) = [ 2 j 1 v ] , r j ( v ) = [ 2 j v ] and s j ( v ) = ( 1 ) r j ( v ) 2 j 1 v + ( 1 ) r j ( v ) + 1 [ r j ( v ) + 1 2 ] .
Taking v = 1 2 in (1), we can get the following AM-GM operator inequality for any two positive operators A and B,
A B A B .
Lin [4] gave a reverse of inequality (6) involving unital positive linear maps Φ :
Φ ( A B ) K ( h , 2 ) Φ ( A B )
for 0 < m I A , B M I and h = M m . In generally, for any two positive operators A , B and P > 1 ,
A B A P B P .
For example, putting P = 2 , A = 2 1 1 1 and B = 1 1 1 1 . However, Lin [4] showed that the inequality (7) can be squared under the same conditions as in it,
Φ 2 ( A B ) K 2 ( h , 2 ) Φ 2 ( A B )
and
Φ 2 ( A B ) K 2 ( h , 2 ) Φ ( A ) Φ ( B ) 2 .
Moreover, the author [4] found that Specht’s ratio and Kantorovich constant have the following relations
S ( h ) K ( h , 2 ) S 2 ( h )
for h > 1 . Also, Lin [4] conjectured K ( h ) can be replaced by S ( h ) in (9) and (10). Xue [5] solved Lin’s conjecture under some conditions: 0 < m I A , B M I , M m 2.314 and h = M m , she got
Φ 2 ( A B ) K ( h , 2 ) Φ 2 ( A B )
and
Φ 2 ( A B ) K ( h , 2 ) ( Φ ( A ) Φ ( B ) ) 2 .
Recently, Ali et al. [6] gave some refinements of inequalities (12) and (13) as follows:
Theorem 1.
Let 0 < m M , M m 2.314 . For every positive unital linear map Φ,
(1) 
if 0 < m I A , B M + m 2 I , then
Φ 2 A B + M + m 2 m A 1 + B 1 2 ( A 1 B 1 ) M + m 2 M m 2 Φ 2 ( A v B ) ;
Φ 2 A B + M + m 2 m A 1 + B 1 2 ( A 1 B 1 ) M + m 2 M m 2 Φ ( A ) v Φ ( B ) 2 ;
(2) 
if 0 < M + m 2 I A , B M I , then
Φ 2 A B + M + m 2 M A 1 + B 1 2 ( A 1 B 1 ) M + m 2 M m 2 Φ 2 ( A v B ) ;
Φ 2 A B + M + m 2 M A 1 + B 1 2 ( A 1 B 1 ) M + m 2 M m 2 Φ ( A ) v Φ ( B ) 2 ;
(3) 
if 0 < m I A < M + m 2 I B M I , then
Φ 2 A B + M + m 2 m A 1 + M B 1 2 ( m A 1 M B 1 ) M + m 2 M m 2 Φ 2 ( A v B ) ;
Φ 2 A B + M + m 2 m A 1 + M B 1 2 ( m A 1 M B 1 ) M + m 2 M m 2 Φ ( A ) v Φ ( B ) 2 ;
(4) 
if 0 < m I B M + m 2 I A M I , then
Φ 2 A B + M + m 2 M A 1 + m B 1 2 ( M A 1 m B 1 ) M + m 2 M m 2 Φ 2 ( A v B ) ;
Φ 2 A B + M + m 2 M A 1 + m B 1 2 ( M A 1 m B 1 ) M + m 2 M m 2 Φ ( A ) v Φ ( B ) 2 ;
For more information about operator inequalities involving positive linear maps, we refer the readers to [7,8,9,10,11] and references therein.
In this paper, we shall give some more generalized and further refinements of reversed AM-GM operator inequalities for positive linear maps due to Ali’s results.

2. Main Results

We give some lemmas to prove our main results.
Lemma 1.
Let 0 < m I A m I < M I B M I , h = M m , h = M m . Then we have
K h 2 N , 2 β N ( v ) A v B + j = 1 N s j ( v ) A α j ( v ) B + A α j ( v ) + 2 1 j B 2 A α j ( v ) + 2 j B A v B ,
where α j ( v ) = k j ( v ) 2 j 1 , k j ( v ) = [ 2 j 1 v ] and β N ( v ) = min 1 + [ 2 N v ] 2 N v , 2 N v [ 2 N v ] , r j ( v ) = [ 2 j v ] and s j ( v ) = ( 1 ) r j ( v ) 2 j 1 v + ( 1 ) r j ( v ) + 1 r j ( v ) + 1 2 .
Proof. 
Putting a = 1 in (4), we obtain
K 1 b 2 N , 2 β N ( v ) b v + j = 1 N s j ( v ) b α j ( v ) + b α j ( v ) + 2 1 j 2 b α j ( v ) + 2 j ( 1 v ) + v b .
Taking X = A 1 2 B A 1 2 , and then S p ( X ) [ h , h ] ( 1 , + ) . By standard functional calculus and the Kantorovich constant K ( 1 t , 2 ) is a decreasing function on 1 t ( 0 , 1 ) , we get
K 1 h 2 N , 2 β N ( v ) X v + j = 1 N s j ( v ) X α j ( v ) + X α j ( v ) + 2 1 j 2 X α j ( v ) + 2 j ( 1 v ) + v X .
Multiplying A 1 2 on both sides of inequality (15), with the fact K ( h , 2 ) = K 1 h , 2 , we can get (14) directly.  □
Lemma 2.
Under the same conditions as in Lemma 1, we have
A v B + M m K h 2 N , 2 β N ( v ) ( A v B ) 1 + M m S N ( v ; B 1 , A 1 ) M + m ,
where S N ( v ; B 1 , A 1 ) = j = 1 N s j ( v ) A 1 α j ( v ) B 1 + A 1 α j ( v ) + 2 1 j B 1 2 A 1 α j ( v ) + 2 j B 1 .
Proof. 
If 0 < m I A , B M I , then
( M A ) ( A m ) A 1 0 and ( M B ) ( B m ) B 1 0 ,
that is
A + M m A 1 M + m and B + M m B 1 M + m .
So we have
A v B + M m ( A 1 v B 1 ) M + m .
Thus, we obtain
A v B + M m S N ( v ; B 1 , A 1 ) + M m K h 2 N , 2 β N ( v ) ( A v B ) 1 = A v B + M m S N ( v ; B 1 , A 1 ) + K h 2 N , 2 β N ( v ) A 1 v B 1 A v B + M m A 1 v B 1 ( by ( 14 ) ) M + m . ( by ( 18 ) )
 □
Lemma 3
([12]). Let A , B 0 . Then the following norm inequality holds
A B 1 4 A + B 2 .
Lemma 4
([13]). Let Φ be a unital positive linear map and A > 0 . Then
Φ ( A ) 1 Φ ( A 1 ) .
Lemma 5
([14]). (i) If 0 P 1 and A B 0 , then
A P B P .
(ii) Let Φ be a unital positive linear map and A , B > 0 . For v [ 0 , 1 ] , we have
Φ ( A v B ) Φ ( A ) v Φ ( B ) .
Lemma 6
([15]). Let A , B 0 . Then for 1 P < + ,
A P + B P ( A + B ) P .
Theorem 2.
Let 0 < m I M I , M m 2.314 and S N ( v ; B 1 , A 1 ) defined as in Lemma 2. Then for every positive unital linear map Φ and P [ 0 , 2 ] ,
(1) 
if 0 < m I A m 1 I < M 1 I B M + m 2 I , then
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 Φ P ( A v B ) ;
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 1 = M 1 m 1 and v [ 0 , 1 ] .
(2) 
if 0 < M + m 2 I A m 2 I < M 2 I B M I , then
Φ P A v B + M + m 2 M S N ( v ; B 1 , A 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 2 2 N , 2 Φ P ( A v B ) ;
Φ P A v B + M + m 2 M S N ( v ; B 1 , A 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 2 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 2 = M 2 m 2 and v [ 0 , 1 ] .
(3) 
if 0 < m I A m 3 I < M + m 2 I B M I , then
Φ P A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) M m P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) h 3 2 N , 2 Φ P ( A v B ) ;
Φ P A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) M m P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) h 3 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 3 = M + m 2 m 3 and v [ 0 , 1 2 ] .
(4) 
if 0 < m I B M + m 2 I < M 4 I A M I , then
Φ P A v B + M + m 2 S N ( v ; m B 1 , M A 1 ) M m P 2 ( 2 v 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 4 2 N , 2 Φ P ( A v B ) ;
Φ P A v B + M + m 2 S N ( v ; m B 1 , M A 1 ) M m P 2 ( 2 v 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 4 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 4 = 2 M 4 M + m and v [ 1 2 , 1 ] .
Proof. 
If 0 < m I A m 1 I < M 1 I B M + m 2 I , we obtain
| | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) × M + m 2 m K h 1 2 N , 2 β N ( v ) Φ 1 ( A v B ) | | 1 4 | | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ 1 ( A v B ) | | 2 1 4 | | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ ( A v B ) 1 | | 2 = 1 4 | | Φ A v B + M + m 2 m K h 1 2 N , 2 β N ( v ) ( A v B ) 1 + M + m 2 m S N ( v ; B 1 , A 1 ) | | 2 1 4 M + m 2 + m 2 ,
where the first inequality is by (19), the second one is by (20), and the last inequality comes from (16). That is
| | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) Φ 1 ( A v B ) | | ( M + m 2 + m ) 2 4 M + m 2 m K h 1 2 N , 2 β N ( v ) .
Since 1 M m 2.314 , it follows that M m 1 2 M m 3 2 M m + M m 4 0 , which is equivalent to
M + m 2 + m 2 4 M + m 2 m M + m 2 M m .
So we have
| | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) Φ 1 ( A v B ) | | M + m 2 M m K h 1 2 N , 2 β N ( v ) .
That is
Φ 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) K ( h , 2 ) K h 1 2 N , 2 2 β N ( v ) Φ 2 ( A v B ) .
In addition, we can get
| | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) × M + m 2 m K h 1 2 N , 2 β N ( v ) Φ ( A ) v Φ ( B ) 1 | | 1 4 | | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ ( A ) v Φ ( B ) 1 | | 2 1 4 | | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ 1 ( A v B ) | | 2 1 4 M + m 2 + m 2 ,
where the first inequality is by (19), the second is by (22), and the third is by (32). That is
| | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) Φ ( A ) v Φ ( B ) 1 | | M + m 2 + m 2 4 M + m 2 m K h 1 2 N , 2 β N ( v ) K 1 2 ( h , 2 ) K h 1 2 N , 2 β N ( v ) .
So we have
Φ 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) K ( h , 2 ) K h 1 2 N , 2 2 β N ( v ) Φ ( A ) v Φ ( B ) 2 .
We can get (24) and (25) by (34) and (35) with Lemma 5 (i), respectively.
Since M + m 2 + M 2 4 M + m 2 M M + m 2 + m 2 4 M + m 2 m , by 2nd case 0 < M + m 2 I A m 2 I < M 2 I B M I , we can similarly obtain the inequalities (26) and (27) by (16), (17), (19) and (20). So we omit the details.
If 0 < m I A m 3 I < M + m 2 I B M I and v [ 0 , 1 2 ] , then we have
A + M + m 2 m A 1 M + m 2 + m and B + M + m 2 M B 1 M + m 2 + M .
So
A v B + M + m 2 ( m A 1 ) v ( M B 1 ) ( v + 1 2 ) M + ( 3 2 v ) m M + m .
Compute
| | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) × M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ 1 ( A v B ) | | 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ 1 ( A v B ) | | 2 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ ( A v B ) 1 | | 2 = 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + K h 3 2 N , 2 β N ( v ) ( m A 1 ) v ( M B 1 ) | | 2 1 4 | | Φ A v B + M + m 2 ( m A 1 ) v ( M B 1 ) | | 2 ( M + m ) 2 4 .
where the first inequality is by (19), the second is by (20), the third is by (14), and the last one is by (36). That is
| | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) Φ 1 ( A v B ) | | ( M + m ) 2 4 M + m 2 m 1 v M v K h 3 2 N , 2 β N ( v ) = M m 1 2 v K 1 2 ( h , 2 ) K h 3 2 N , 2 β N ( v ) .
That is
Φ 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) M m 1 2 v K ( h , 2 ) K h 3 2 N , 2 2 β N ( v ) Φ 2 ( A v B ) .
Moreover,
| | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) × M + m 2 m 1 v M v K h 3 2 N , 2 β N ( v ) Φ ( A ) v Φ ( B ) 1 | | 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 m 1 v M v K h 3 2 N , 2 β N ( v ) Φ ( A ) v Φ ( B ) 1 | | 2 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 m 1 v M v K h 3 2 N , 2 β N ( v ) Φ 1 ( A v B ) | | 2 ( M + m ) 2 4 ,
where the first inequality is by (19), the second is by (22), and the third is by (37). That is
| | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) Φ ( A ) v Φ ( B ) 1 | | M m 1 2 v K 1 2 ( h , 2 ) K h 3 2 N , 2 β N ( v ) ,
so we have
Φ 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) M m 1 2 v K ( h , 2 ) K h 3 2 N , 2 2 β N ( v ) Φ ( A ) v Φ ( B ) 2 .
We can get (28) and (29) by (38) and (39) with Lemma 5 (i), respectively.
We can similarly obtain the inequalities (30) and (31) under the conditions 0 < m I B M + m 2 I < M 3 I A M I and v [ 1 2 , 1 ] . So we omit the details.
Here we complete the proof.  □
Remark 1.
Putting v = 1 2 , N = 1 and P = 2 in Theorem 2, we can get Theorem 1.
Next, we present the generalizations of Theorem 2 for P 2 .
Theorem 3.
Let 0 < m I M I , M m 2.314 and S N ( v ; B 1 , A 1 ) defined as in Lemma 2. Then for every positive unital linear map Φ and P 2 ,
(i) 
if 0 < m I A m 1 I < M 1 I B M + m 2 I , then
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 Φ P ( A v B ) ;
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 1 = M 1 m 1 and v [ 0 , 1 ] .
(ii) 
if 0 < M + m 2 I A m 2 I < M 2 I B M I , then
Φ P A v B + M + m 2 M S N ( v ; B 1 , A 1 ) 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 2 2 N , 2 Φ P ( A v B ) ;
Φ P A v B + M + m 2 M S N ( v ; B 1 , A 1 ) 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 2 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 2 = M 2 m 2 and v [ 0 , 1 ] .
(iii) 
if 0 < m I A m 3 I < M + m 2 I B M I , then
Φ P A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) 4 P 2 M m P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) ( h 3 2 N , 2 ) Φ P ( A v B ) ;
Φ P A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) 4 P 2 M m P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) h 3 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 3 = M + m 2 m 3 and v [ 0 , 1 2 ] .
(iv) 
if 0 < m I B M + m 2 I < M 4 I A M I , then
Φ P A v B + M + m 2 S N ( v ; m B 1 , M A 1 ) 4 P 2 M m P 2 ( 2 v 1 ) K P 2 ( h , 2 ) K P β N ( v ) ( h 4 2 N , 2 ) Φ P ( A v B ) ;
Φ P A v B + M + m 2 S N ( v ; m B 1 , M A 1 ) 4 P 2 M m P 2 ( 2 v 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 4 2 N , 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 4 = 2 M 4 M + m and v [ 1 2 , 1 ] .
Proof. 
The proof of the line (ii) and (iv) are similar to the one presented in (i) and (iii), respectively, thus we omit them. Under the conditions i) 0 < m I A m 1 I < M 1 I B M + m 2 I , we have
| | Φ P 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) × M + m 2 P 2 m P 2 K P 2 β N ( v ) h 1 2 N , 2 Φ P 2 ( A v B ) | | 1 4 | | Φ P 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 P 2 m P 2 K P 2 β N ( v ) h 1 2 N , 2 Φ P 2 ( A v B ) | | 2 1 4 | | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ 1 ( A v B ) P 2 | | 2 = 1 4 | | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ 1 ( A v B ) | | P 1 4 M + m 2 + m P .
where the first inequality is by (19), the second is by (23) and the third is by (32). That is
| | Φ P 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) Φ P 2 ( A v B ) | | M + m 2 + m P 4 M + m 2 P 2 m P 2 K P 2 β N ( v ) h 1 2 N , 2 4 P 2 1 M + m 2 M m P 2 K P 2 β N ( v ) ( h 1 2 N , 2 ) = 4 P 2 1 K P 4 ( h , 2 ) K P 2 β N ( v ) h 1 2 N , 2 ,
where the second inequality is by (33). So we have
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 Φ P ( A v B ) .
In addition, we can get
| | Φ P 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) × M + m 2 P 2 m P 2 K P 2 β N ( v ) h 1 2 N , 2 Φ ( A ) v Φ ( B ) P 2 | | 1 4 | | Φ P 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 P 2 m P 2 K P 2 β N ( v ) h 1 2 N , 2 Φ ( A ) v Φ ( B ) P 2 | | 2 1 4 | | Φ ( A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) ( Φ ( A ) v Φ ( B ) ) 1 P 2 | | 2 = 1 4 | | Φ A v B + M + m 2 m S N ( v ; B 1 , A 1 ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ ( A ) v Φ ( B ) 1 | | P 1 4 | | Φ ( A v B + M + m 2 m S N ( v ; B 1 , A 1 ) ) + M + m 2 m K h 1 2 N , 2 β N ( v ) Φ 1 ( A v B ) | | P 1 4 M + m 2 + m P .
where the first inequality is by (19), the second is by (23), the third is by (22) and the last is by (32). That is
| | Φ P 2 A v B + M + m 2 m S N ( v ; B 1 , A 1 ) Φ ( A ) v Φ ( B ) P 2 | | 4 P 2 1 K P 4 ( h , 2 ) K P 2 β N ( v ) h 1 2 N , 2 ,
so we have
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 Φ ( A ) v Φ ( B ) P ,
as desired.
If 0 < m I A m 3 I < M + m 2 I B M I and v [ 0 , 1 2 ] , then
| | Φ P 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) × M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v P 2 Φ P 2 ( A v B ) | | 1 4 | | Φ P 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v P 2 Φ P 2 ( A v B ) | | 2 1 4 | | Φ ( A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ 1 ( A v B ) ) P 2 | | 2 = 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ 1 ( A v B ) | | P 1 4 ( M + m ) P .
where the first inequality is by (19), the second is by (23) and the third is by (37). That is
| | Φ P 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) Φ P 2 ( A v B ) | | ( M + m ) P 4 M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v P 2 = 2 P 2 M m P 4 ( 1 2 v ) K P 4 ( h , 2 ) K P 2 β N ( v ) h 3 2 N , 2 .
So we have
Φ P A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) 4 P 2 M m P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) h 3 2 N , 2 Φ P ( A v B ) .
At the same time, we can get
| | Φ P 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) × M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v P 2 Φ ( A ) v Φ ( B ) P 2 | | 1 4 | | Φ P 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v P 2 Φ ( A ) v Φ ( B ) P 2 | | 2 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ ( A ) v Φ ( B ) 1 P 2 | | 2 = 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ ( A ) v Φ ( B ) 1 | | P 1 4 | | Φ A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) + M + m 2 K h 3 2 N , 2 β N ( v ) m 1 v M v Φ 1 ( A v B ) | | P 1 4 ( M + m ) P .
where the first inequality is by (19), the second is by (23), the third is by (22) and the last is by (37). That is
| | Φ P 2 A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) Φ ( A ) v Φ ( B ) P 2 | | ( M + m ) P 4 M + m 2 m 1 v M v P 2 K P 2 β N ( v ) h 3 2 N , 2 = 2 P 2 M m P 4 ( 1 2 v ) K P 4 ( h , 2 ) K P 2 β N ( v ) h 3 2 N , 2 .
So we have
Φ P ( A v B + M + m 2 ( S N ( v ; M B 1 , m A 1 ) ) ) 4 P 2 ( M m ) P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) ( h 3 2 N , 2 ) ( Φ ( A ) v Φ ( B ) ) P .
Here we complete the proof.  □
Theorems 2 and 3 implies the following results.
Corollary 1.
Let 0 < m M , M m 2.314 and S N ( v ; B 1 , A 1 ) defined as in Lemma 2. Then for every positive unital linear map Φ and P 0 ,
(i) 
if 0 < m I A m 1 I < M 1 I B M + m 2 I , v [ 0 , 1 ] , then
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) W 1 Φ P ( A v B ) ;
Φ P A v B + M + m 2 m S N ( v ; B 1 , A 1 ) W 1 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 1 = M 1 m 1 , W 1 = max K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 , 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 .
(ii) 
if 0 < M + m 2 I A m 2 I < M 2 I B M I , v [ 0 , 1 ] , then
Φ P A v B + M + m 2 M S N ( v ; B 1 , A 1 ) W 2 Φ P ( A v B ) ;
Φ P A v B + M + m 2 M S N ( v ; B 1 , A 1 ) W 2 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 2 = M 2 m 2 , W 2 = max K P 2 ( h , 2 ) K P β N ( v ) h 2 2 N , 2 , 4 P 2 K P 2 ( h , 2 ) K P β N ( v ) h 1 2 N , 2 .
(iii) 
if 0 < m I A m 3 I < M + m 2 I B M I , v [ 0 , 1 2 ] , then
Φ P A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) W 3 Φ P ( A v B ) ;
Φ P A v B + M + m 2 S N ( v ; M B 1 , m A 1 ) W 3 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 3 = M + m 2 m 3 , W 3 = max M m P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) h 3 2 N , 2 , 4 P 2 M m P 2 ( 1 2 v ) K P 2 ( h , 2 ) K P β N ( v ) h 3 2 N , 2 .
(iv) 
if 0 < m I B M + m 2 I < M 4 I A M I , v [ 1 2 , 1 ] , then
Φ P A v B + M + m 2 ( S N ( v ; m B 1 , M A 1 ) ) W 4 Φ P ( A v B ) ;
Φ P A v B + M + m 2 ( S N ( v ; m B 1 , M A 1 ) ) W 4 Φ ( A ) v Φ ( B ) P ;
where h = M m , h 4 = 2 M 4 M + m , W 4 = max M m P 2 ( 2 v 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 4 2 N , 2 , 4 P 2 M m P 2 ( 2 v 1 ) K P 2 ( h , 2 ) K P β N ( v ) h 4 2 N , 2 .

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Furuichi, S. Refined Young inequalities with Specht’s ratio. J. Egypt. Math. Soc. 2012, 20, 46–49. [Google Scholar] [CrossRef]
  2. Zuo, H.L.; Shi, G.H.; Fujii, M. Refined Young inequality with Kantorovich constant. J. Math. Inequal. 2011, 5, 551–556. [Google Scholar] [CrossRef]
  3. Sababheh, M.; Moslehian, M.S. Advanced refinements of Young and Heinz inequalities. J. Number Theory 2017, 172, 178–199. [Google Scholar] [CrossRef]
  4. Lin, M.H. Squaring a reverse AM-GM inequality. Studia Math. 2013, 215, 187–194. [Google Scholar] [CrossRef]
  5. Xue, J.M. Some refinements of operator reverse AM-GM inequality. J. Inequal. Appl. 2017, 2017, 283. [Google Scholar] [CrossRef] [PubMed]
  6. Ali, I.; Shakoor, A.; Rehman, A. More refinements of the operator reverse AM-GM inequality for positive linear maps. J. Math. Inequal. 2019, 13, 287–300. [Google Scholar] [CrossRef]
  7. Ighachane, M.A.; Akkouchi, M. Further refinements of Young’s type inequality for positive linear maps. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2021, 115, 19. [Google Scholar] [CrossRef]
  8. Karim, S.; Ali, I.; Mushtaq, M. Improvements of operator reverse AM-GM inequality involving positive linear maps. J. Inequal. Appl. 2020, 73, 12. [Google Scholar] [CrossRef]
  9. Karim, S.; Ali, I.; Mushtaq, M. New developments on operator reverse AM-GM inequality for positive linear maps. Acta Math. Sin. 2022, 38, 419–430. [Google Scholar] [CrossRef]
  10. Srivastava, H.M.; Chandel, R.C.S.; Kumar, H. Some general Hurwitz-Lerch type Zeta functions associated with the Srivastava-Daoust multiple hypergeometric functions. J. Nonlinear Var. Anal. 2022, 6, 299–315. [Google Scholar]
  11. Yang, C.S.; Li, Y. On the further refinement of some operator inequalities for positive linear map. J. Math. Inequal. 2021, 15, 781–797. [Google Scholar] [CrossRef]
  12. Bhatia, R.; Kittaneh, F. Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl. 2000, 308, 203–211. [Google Scholar] [CrossRef]
  13. Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
  14. Pečarić, J.; Furuta, T.; Hot, J.; Seo, Y. Mond-Pečarić Method in Operator Inequalities; Element: Zagreb, Croatia, 2005. [Google Scholar]
  15. Ando, T.; Zhan, X. Norm inequalities related to operator monotone functions. Math. Ann. 1999, 315, 771–780. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.