Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps
Abstract
:1. Introduction
- (1)
- if , then
- (2)
- if , then
- (3)
- if , then
- (4)
- if , then
2. Main Results
- (1)
- if , then
- (2)
- if , then
- (3)
- if , then
- (4)
- if , then
- (i)
- if , then
- (ii)
- if , then
- (iii)
- if , then
- (iv)
- if , then
- (i)
- if , , then
- (ii)
- if , , then
- (iii)
- if , , then
- (iv)
- if , , then
Funding
Data Availability Statement
Conflicts of Interest
References
- Furuichi, S. Refined Young inequalities with Specht’s ratio. J. Egypt. Math. Soc. 2012, 20, 46–49. [Google Scholar] [CrossRef]
- Zuo, H.L.; Shi, G.H.; Fujii, M. Refined Young inequality with Kantorovich constant. J. Math. Inequal. 2011, 5, 551–556. [Google Scholar] [CrossRef]
- Sababheh, M.; Moslehian, M.S. Advanced refinements of Young and Heinz inequalities. J. Number Theory 2017, 172, 178–199. [Google Scholar] [CrossRef]
- Lin, M.H. Squaring a reverse AM-GM inequality. Studia Math. 2013, 215, 187–194. [Google Scholar] [CrossRef]
- Xue, J.M. Some refinements of operator reverse AM-GM inequality. J. Inequal. Appl. 2017, 2017, 283. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Shakoor, A.; Rehman, A. More refinements of the operator reverse AM-GM inequality for positive linear maps. J. Math. Inequal. 2019, 13, 287–300. [Google Scholar] [CrossRef]
- Ighachane, M.A.; Akkouchi, M. Further refinements of Young’s type inequality for positive linear maps. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2021, 115, 19. [Google Scholar] [CrossRef]
- Karim, S.; Ali, I.; Mushtaq, M. Improvements of operator reverse AM-GM inequality involving positive linear maps. J. Inequal. Appl. 2020, 73, 12. [Google Scholar] [CrossRef]
- Karim, S.; Ali, I.; Mushtaq, M. New developments on operator reverse AM-GM inequality for positive linear maps. Acta Math. Sin. 2022, 38, 419–430. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Chandel, R.C.S.; Kumar, H. Some general Hurwitz-Lerch type Zeta functions associated with the Srivastava-Daoust multiple hypergeometric functions. J. Nonlinear Var. Anal. 2022, 6, 299–315. [Google Scholar]
- Yang, C.S.; Li, Y. On the further refinement of some operator inequalities for positive linear map. J. Math. Inequal. 2021, 15, 781–797. [Google Scholar] [CrossRef]
- Bhatia, R.; Kittaneh, F. Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl. 2000, 308, 203–211. [Google Scholar] [CrossRef]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Pečarić, J.; Furuta, T.; Hot, J.; Seo, Y. Mond-Pečarić Method in Operator Inequalities; Element: Zagreb, Croatia, 2005. [Google Scholar]
- Ando, T.; Zhan, X. Norm inequalities related to operator monotone functions. Math. Ann. 1999, 315, 771–780. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y. Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps. Axioms 2023, 12, 977. https://doi.org/10.3390/axioms12100977
Ren Y. Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps. Axioms. 2023; 12(10):977. https://doi.org/10.3390/axioms12100977
Chicago/Turabian StyleRen, Yonghui. 2023. "Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps" Axioms 12, no. 10: 977. https://doi.org/10.3390/axioms12100977
APA StyleRen, Y. (2023). Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps. Axioms, 12(10), 977. https://doi.org/10.3390/axioms12100977