
Citation: Agarwal, R.P.; Darwish,

M.A.; Elshamy, H.A.; Saker, S.H.

Fundamental Properties of

Muckenhoupt and Gehring Weights

on Time Scales. Axioms 2024, 13, 98.

https://doi.org/10.3390/

axioms13020098

Academic Editor: Christophe

Chesneau

Received: 2 January 2024

Revised: 22 January 2024

Accepted: 26 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Fundamental Properties of Muckenhoupt and Gehring Weights
on Time Scales
Ravi P. Agarwal 1,* , Mohamed Abdalla Darwish 2 , Hamdi Ali Elshamy 2 and Samir H. Saker 3,4

1 Department of Mathematics, Texas A & M University-Kingsville, Kingsville, TX 78363, USA
2 Department of Mathematics, Faculty of Science, Damanhour University, Damanhour 22514, Egypt;

dr.madarwish@gmail.com (M.A.D.); h_elshamy@sci.dmu.edu.eg (H.A.E.)
3 Department of Mathematics, Mansoura University, Mansoura 35516, Egypt; shsaker@mans.edu.eg
4 Department of Mathematics, Faculty of Science, New Mansoura University,

New Mansoura City 7723730, Egypt
* Correspondence: ravi.agarwal@tamuk.edu

Abstract: Some fundamental properties of the Muckenhoupt class Ap of weights and the Gehring
class Gq of weights on time scales and some relations between them will be proved in this paper.
To prove the main results, we will apply an approach based on proving some properties of integral
operators on time scales with powers and certain mathematical relations connecting the norms
of Muckenhoupt and Gehring classes. The results as special cases cover the results for functions
following David Cruz-Uribe, C. J. Neugebauer, and A. Popoli, and when the time scale equals the
positive integers, the results for sequences are essentially new.
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1. Introduction and Background

In this article, we employ the calculus on time scales to prove some properties of
Muckenhoupt and Gehring weights and some relations between them. The study of
dynamic equations and inequalities on time scales has been developed by Stefan Hilger
in [1]. The two books by Bohner and Peterson [2,3] have summarized and organized most
time scale calculus. A time scale T is an arbitrary nonempty closed subset of R, the set
of real numbers. The three well-known time scale calculus are differential calculus when
T = Z+, differential calculus when T = R, and quantum calculus when

T = {qn : n ∈ N0}, where q > 1.

We assume that a time scale T has the topology that it is inherited from the standard
topology on R, the set of real numbers. The backward and forward jump operators defined
on T are given by ρ(ξ) := sup{η ∈ T : η < ξ} and σ(ξ) := inf{η ∈ T : η > ξ}, respectively,
where sup ϕ = inf T. We define the time-scale interval [a, b] T by [a, b] T := [a, b] ∩ T. The
graininess function µ for a time scale T is defined by µ(ξ) := σ(ξ)− ξ ≥ 0, and for any
function ψ : T → R, the notation ψσ(ξ) denotes ψ(σ(ξ)). Recall the following product and
quotient rules for the derivative of the product ψφ and the quotient ψ/φ of two (delta)
differentiable functions ψ and φ

(ψφ)∆ = ψ∆ φ + ψσ φ∆ = ψφ∆ + ψ∆ φσ, and (
ψ

φ
)∆ =

ψ∆ φ − ψφ∆

φφσ
, (1)
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where φφσ ̸= 0, and φσ = (φ ◦ σ). The (delta) integral is defined as follows: If ϕ∆(ξ) = φ(ξ),
then the delta integral of φ is given by

∫ ξ
0 φ(η)∆η := ϕ(ξ)− ϕ(0). The Cauchy integral

ϕ(ξ) =
∫ ξ

0 φ(η)∆η exists, 0 ∈ T, and satisfies ϕ∆(ξ) = φ(ξ), for ξ ∈ T. A simple
consequence of Keller’s chain rule is given by (see [2])

(yγ(ξ))∆ = γ
∫ 1

0
[hyσ(ξ) + (1 − h)y(ξ)]γ−1dhy∆(ξ), (2)

and the integration by parts formula on time scales is given by

∫ b

a
ψ∆(ξ)φσ(ξ)∆t = [ψ(ξ)φ(ξ)]ba −

∫ b

a
ψ(ξ)φ∆(ξ)∆t, for a, b ∈ T. (3)

We say that ψ belongs to Lα([0, ∞)T) provided that

∥ψ∥Lα([0,∞)T)
=

(∫ ∞

0
|ψ(η)|α∆η

)1/α

< ∞, if 1 ≤ α < ∞.

Hölder’s inequality on time scales is given by

∫
S

ψ(η)φ(η)∆η ≤
(∫

S
ψα(η)∆η

) 1
α
(∫

S
φβ(η)∆η

) 1
β

, (4)

for α > 1 and 1/α + 1/β = 1 and S ⊆ [0, ∞)T. We say that ψ satisfies a reverse Hölder
inequality if for α > β there exists a constant C > 1 such that the inequality

(
1
|S|

∫
S

ψα(η)∆η

) 1
α

≤ C
(

1
|S|

∫
S

ψβ(η)∆η

) 1
β

, (5)

holds for S ⊆ [0, ∞)T. The Jensen inequality for convex functions is given by

ψ

(
1
|S|

∫
S

φ(η)∆η

)
≤ 1

|S|

∫
S

ψ(φ(η))∆η. (6)

A special case of (6), when ψ(x) = xα, we have the inequality(
1
|S|

∫
S

φ(η)∆η

)α

≤ 1
|S|

∫
S

φα(η)∆η, (7)

for α < 0 or α > 1, and for α ∈ (0, 1), we have that(
1
|S|

∫
S

φ(η)∆η

)α

≥ 1
|S|

∫
S

φα(η)∆η. (8)

We assume that a weight θ is a non-negative locally ∆-integrable weight defined on [0, ∞)T
and α > 1 be a positive real number and S ⊆ [0, ∞)T and denote by |S| the Lebesgue
∆-measure of S.

The non-negative weight θ is said to belong to the Muckenhoupt class Aα(C) for α > 1
and C > 1 (independent of α) if the inequality

1
|S|

∫
S

θ(η)∆η ≤ C
(

1
|S|

∫
S

θ
1

1−α (η)∆η

)1−α

. (9)

The weight θ is said to belong to the Muckenhoupt class A1(C) if the inequality

1
|S|

∫
S

θ(η)∆η ≤ Cθ(x), for C > 1, for all x ∈ S.
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The weight θ is said to belong to the Muckenhoupt class A∞(C) if the inequality(
1
|S|

∫
S

θ(η)∆η

)(
exp

(
1
|S|

∫
S

log
1

θ(η)
∆η

))
≤ C, C > 1.

The weight θ is said to belong to the Gehring class Gβ(K) (satisfies the reverse Hölder
inequality) for β > 1 and K > 1 (independent of β) if the inequality

(
1
|S|

∫
S

θβ(η)∆η

) 1
β

≤ K
1
|S|

∫
S

θ(η)∆η, (10)

holds for every subinterval S ⊆ [0, ∞)T. The weight θ is said to belong to the Gehring class
G∞(K) if the inequality

θ(x) ≤ K
1
|S|

∫
S

θ(η)∆η, for K > 0 and x ∈ S,

holds for every S ⊆ [0, ∞)T. The weight θ is said to belong to the Gehring class G1(K) if
the inequality

exp

(
1
|S|

∫
S

θ(η)
1
|S|
∫

S θ(η)∆η
log

(
θ(η)

1
|S|
∫

S θ(η)∆η

)
∆η

)
≤ K,

holds for every [0, ∞)T. We note that when T = R, the class Aα(C) becomes the classical
Muckenhoupt class Aα(C) of functions that satisfy

1
|S|

∫
S

θ(x)dx ≤ C
(

1
|S|

∫
S

θ
1

1−α (x)dx
)1−α

, (11)

for α > 1 and C > 1 (independent of α) and S ⊆ R+. In [4], Muckenhoupt proved that if
1 < α < ∞ and θ satisfies the Aα-condition (11), with constant C, there exist constants β
and C1 depending on α and C such that 1 < β < α and θ satisfies the Aβ-condition(

1
|S|

∫
S

θ(ξ)dt
)(

1
|S|

∫
S

θ
− 1

β−1 (ξ)dt
)β−1

≤ C1, (12)

for every S ⊆ R+. Muckenhoupt’s result (see also Coifman and Fefferman [5]), which is
the self-improving property states that if θ ∈ Aα(C), then there exists a constant ϵ > 0 and a
positive constant C1 such that θ ∈ Aα−ϵ(C1), and

Aα(C) ⊂ Aα−ϵ(C1). (13)

We note that when T = R, the class Gβ(C) becomes the classical the Gehring class Gβ(K),
1 < β < ∞, of functions that satisfy

(
1
|S|

∫
S

θβ(x)dx
) 1

β

≤ K
(

1
|S|

∫
S

θ(x)dx
)

, (14)

for K > 1 and every S ⊂ R+. Gehring in [6] proved that if (14) holds, then there exist α > β
and a positive constant K1 such that

1
|S|

∫
S

θα(x)dx ≤ K1

(
1
|S|

∫
S

θ(x)dx
)α

. (15)
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In other words, Gehring’s result for the self-improving property states that if θ ∈ Gβ(K),
then there exist ϵ > 0 and a positive constant K1 such that θ ∈ Gβ+ϵ(K1), and then

Gβ(K) ⊂ Gβ+ϵ(K1). (16)

The relations between Gehring and Muckenhoupt classes (inclusions properties) was given
by Coifman and Fefferman in [5]. In [7,8], the author proved that any Gehring class is
contained in some Muckenhoupt class and vice versa. In other words, they proved the
following inclusions

Gβ(K) ⊂ Aα(K1), (17)

and
Aα1(K1) ⊂ Gβ1(K). (18)

For more details of the structure of the Muckenhoupt and Gehring classes of weights, we
refer the reader to the recent paper [9,10] and the references cited therein.

When T = Z+, the class Aα(C) becomes the classical Muckenhoupt class Aα(C) of
sequences. A discrete weight on Z+ = {1, 2, . . .} is a sequence ϑ = {ϑ(n)}∞

n=1 of non-
negative real numbers. The ℓ

p
u(Z+) space is the Banach space of sequences defined on

Z+ = {1, 2, . . .} and is given by

ℓ
p
u(Z+) =

θ(r) :

(
∞

∑
r=1

|θ(r)|pu(r)

)1/p

< ∞

. (19)

A discrete non-negative sequence ϑ belongs to the discrete Muckenhoupt class Aα(C) for
α > 1 and C > 1 if the inequality 1∣∣ Ĵ∣∣ ∑

k∈ Ĵ

ϑ(k)

 1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑ
−1

α−1 (k)

α−1

≤ C, (20)

holds for every J ⊂ Z+. A discrete weight ϑ belongs to the discrete Muckenhoupt class
A1(C) for α > 1 and C > 1 if the inequality

1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑ(k) ≤ Cϑ(k), for all k ∈ Ĵ, (21)

holds for every subinterval Ĵ ⊂ Z+ and
∣∣ Ĵ∣∣ is the cardinality of the set Ĵ. A discrete weight

ϑ is said to be belongs to the discrete Muckenhoupt class A2(C) for α > 1 and C > 1 if the
inequality

∑̂
J∈J

ϑ(k) ∑
k∈ Ĵ

ϑ−1(k) ≤ A
∣∣ Ĵ∣∣2, (22)

holds for every subinterval J ⊂ Z+. Ariño and Muckenhoupt [11] proved that if ϑ is
nonincreasing and satisfies (21), then the space d(ϑ−β∗/β, β∗) is the dual space of the
discrete classical Lorentz space

d(ϑ, β) =

x : ∥x∥ϑ,β =

(
∞

∑
n=1

|x∗(n)|βϑ(n)

)1/β

< ∞

,

where x∗(n) is the nonincreasing rearrangement of |x(n)| and β∗ is the conjugate of β. The
class A2(C) has been used by Pavlov [12] to give a full description of all complete inter-
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polating sequences on the real line. In [13], the authors proved that if ϑ is a nonincreasing
sequence and satisfies (21) for C > 1, then for α ∈ [1, C/(C − 1)), the inequality

1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑα(k) ≤ C1

 1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑ(k)

α

, for J ⊂ Z+, (23)

holds for every subinterval interval Ĵ ⊂ Z+. We also note that when T = Z+, the class
Gβ(K) becomes that the discrete Gehring class Gβ(K) of discrete weights that satisfy the
reverse Hölder inequality

 1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑβ(k)

 1
β

≤ K 1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑ(k),

for a given exponent β > 1 and a constant K > 1, for every subinterval J ⊆ Z+. In [14],
Böttcher and Seybold proved that if ϑ satisfies the Muckenhoupt condition, then there
exist a constant δ > 0 and K1 < ∞ depending only on α and ϑ such that the reverse of the
Hölder inequality

1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑα(1+ε)(k) ≤ K1

 1∣∣ Ĵ∣∣ ∑
k∈ Ĵ

ϑα(k)

1+ε

, (24)

holds (a transition property) for all ε ∈ [0, δ] and all Ĵ of the form
∣∣ Ĵ∣∣ = 2r with r ∈ Z+.

The authors in [15] mentioned that what goes for sums goes, with the obvious modi-
fications, for integrals, which in fact proved the first part of the basic principle of Hardy,
Littlewood, and Polya [16] (p. 11).

Indeed, the proofs for series translate immediately and become much simpler when
applied to integrals, but the converse sometimes is not true.

In recent years, increasing interest has been paid to the study of properties of Mucken-
houpt and Gehring weights on time scales. For example, the authors used the tools on time
scales and proved the self-improving properties of the Muckenhoupt and Gehring weights
in [13] and proved some higher integrability theorems on time scales in [17]. Motivated by
this work, the natural question that arises now is:

Is it possible to prove some new properties of Muckenhoupt and Gehring weights
on time scales, which, as special cases, cover the properties of the continuous and
discrete Muckenhoupt and Gehring weights?

In this paper, we give an affirmative answer to this question. Our main results are
valid on different types of time scales, like T = Z+, T = R and the quantum space
T = {qn : n ∈ N0}. This paper is organized as follows: In Section 2, we state and prove
some basic lemmas that will be needed in the proof of the main results. Some fundamental
properties of the Muckenhoupt and Gehring classes on time scales are provided in Section 3.
In Section 4, we prove some essential relations between the norms (will be defined later) of
these classes on time scales. Our results as particular cases when T = R cover the results
following David Cruz-Uribe [18], Neugebauer [19], and Popoli [20].

Our motivation for proving these results is our belief of the great importance of
the applications of the fundamental properties of the Muckenhoupt and Gehring classes
in developing the boundedness of operators and extrapolation theorems on time scales.
The applications of class of functions of Muckenhoupt’s type have appeared in weighted
inequalities in the 1970s, and the full characterization of the weights w for which the
Hardy–Littlewood maximal operator is bounded on Lp

w(R) by means of the so-called the
Muckenhoupt Ap-condition on the weight w has been achieved by Muckenhoupt (see [4]).

The result of Muckenhoupt became a landmark in the theory of weighted inequalities
for classical operators like the Hardy operator, the Hilbert operator, Calderón-Zygmund
singular integral operators, fractional integral operators, etc. On the other hand, the
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extrapolation theorems following Rubio de Francia, that are announced in [21], and the
detailed proof given in [22], have been proved by the properties of Ap-Muckenhoupt
weights. The integrability properties of the gradient of quasiconformal mappings of
functions has been developed by Gehring [6] in connection with the properties of weights
satisfying the reverse Hölder inequality (Gehring weights).

2. Some Essential Lemmas

Throughout this section, we assume that a weight θ is a non-negative locally ∆-integrable
function defined on [0, ∞)T.

Definition 1. We define the operator Mβθ, for any non-negative weight θ, by

Mβθ :=
(

1
|S|

∫
S

θβ(η)∆η

) 1
β

, (25)

for any real number β ̸= 0, where S ⊆ [0, ∞)T.

We note that when T = R, and β = 1, the operator (25) becomes the integral Hardy
operator

M f (t) :=
1
t

∫ t

0
f (s)ds, for t > 0, (26)

which has been studied by Ariňo and Muckenhoupt [23] on the space Lp
u(R+) and the

characterizations of the weighted function u in connection with the boundedness of Hardy
operator (26) have been established. When T = Z+, and β = 1, the operator (25) becomes
the discrete Hardy operator

Mg(n) :=
1
n

n−1

∑
k=0

g(k), for n > 1. (27)

The authors in [24] proved that the Hardy operator (27) is bounded in ℓ
p
u(Z+) if and only

if u ∈ Ap(C). In the following lemma, we state and prove some basic properties of the
operator Mβθ, which will be needed in the proof of the main results.

Lemma 1. If θ is a non-negative weight and α, β ̸= 0 are real numbers, then the following
properties hold:

(1) M−1θ(η) ≤ M1θ(η).
(2) Mβθ(η) ≥ M1θ(η), for all β ≥ 1.
(3) Mβθ(η) ≤ M1θ(η), for all β < 1.
(4) Mαθ(η) ≤ Mβθ(η), for all α ≤ β.

Proof. (1) By applying inequality (7) with α = −1 < 0, we have(
1
|S|

∫
S

θ(η)∆η

)−1
≤ 1

|S|

∫
S

θ−1(η)∆η.

Then, (
1
|S|

∫
S

θ−1(η)∆η

)−1
≤ 1

|S|

∫
S

θ(η)∆η,

which is the desired result.
(2) By applying inequality (7) with α = β > 1, we have(

1
|S|

∫
S

θ(η)∆η

)β

≤ 1
|S|

∫
S

θβ(η)∆η.
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Then,
1
|S|

∫
S

θ(η)∆η ≤
(

1
|S|

∫
S

θβ(η)∆η

)1/β

,

which is the desired result.
(3) Since β < 1, we consider the two cases: β < 0 and 0 < β ≤ 1.
(a) If β < 0, by applying inequality (7) with α = β < 0, then we have(

1
|S|

∫
S

θ(η)∆η

)β

≤ 1
|S|

∫
S

θβ(η)∆η.

By taking into account that β is negative, we have

1
|S|

∫
S

θ(η)∆η ≥
(

1
|S|

∫
S

θβ(η)∆η

)1/β

.

(b) If 0 ≤ β < 1, by applying inequality (8) with 0 < α = β < 1, then we have(
1
|S|

∫
S

θ(η)∆η

)β

≥ 1
|S|

∫
S

θβ(η)∆η.

Then,
1
|S|

∫
S

θ(η)∆η ≥
(

1
|S|

∫
S

θβ(η)∆η

)1/β

.

This is the desired result.
(4) We discuss three cases: 0 < α ≤ β, α ≤ β < 0, and α < 0 < β.
(a) If 0 < α ≤ β, then β/α ≥ 1, and hence using property (2), we have Mβ/αθα ≥ M1θα.

That is, (
1
|S|

∫
S

θβ(η)∆η

)α/β

≥ 1
|S|

∫
S

θα(η)∆η.

Thus, (
1
|S|

∫
S

θβ(η)∆η

)1/β

≥
(

1
|S|

∫
S

θα(η)∆η

)1/α

.

(b) If α ≤ β < 0, then α/β ≥ 1, and hence, using Property (2), we have Mα/βθβ ≥ M1θβ.
That is, (

1
|S|

∫
S

θα(η)∆η

)β/α

≥ 1
|S|

∫
S

θβ(η)∆η.

Thus, by taking into account that β is negative, we have(
1
|S|

∫
S

θα(η)∆η

)1/α

≤
(

1
|S|

∫
S

θβ(η)∆η

)1/β

.

(c) If α < 0 < β, then α/β < 0, and hence using Property (3), we have Mα/βθβ ≤ M1φβ.
That is, (

1
|S|

∫
S

θα(η)∆η

)β/α

<
1
|S|

∫
S

θβ(η)∆η.

Thus, (
1
|S|

∫
S

θα(η)∆η

)1/α

≤
(

1
|S|

∫
S

θβ(η)∆η

)1/β

.

From these three cases, we obtain the desired result. The proof is complete.

Lemma 2. Let β be a positive real number. If θ ∈ Gβ(K) for β > 1 and K > 1, then Mβθ ≤ KM1θ,
and consequently, Mβθ ≤ KMαθ for all α ≥ 1 .
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Proof. Since θ ∈ Gβ(K), then for every interval S ⊂ [0, ∞)T, for β > 1 and K > 1, we
have that (

1
|S|

∫
S

θβ(η)∆η

)1/β

≤ K
(

1
|S|

∫
S

θ(η)∆η

)
. (28)

By the definition of the operator Mβ, (28) is written as

Mβθ ≤ KM1θ. (29)

Furthermore, by Property (2) in Lemma 1, we have

M1θ ≤ Mαθ, (30)

for all α ≥ 1. By using (29) and (30), we obtain

Mβθ ≤ KMαθ, (31)

for β > 1 and all α ≥ 1. This is the desired result. The proof is complete.

In the following, we prove some basic properties of the Muckenhoupt Aα-weights and
the Gehring Gβ-weights on time scales.

Lemma 3. If θ ∈ Aα(C), and α > 1, then

M1θ ≤ C exp(M1 log θ), (32)

holds.

Proof. Since θ ∈ Aα(C) on time scales, for α > 1, we have

1
|S|

∫
S

θ(η)∆η ≤ C
(

1
|S|

∫
S

θ
1

1−α (η)∆η

)1−α

, (33)

for all S ⊆ [0, ∞)T. By applying Jensen’s inequality for the convex function ψ(x) = exp(x)
and φ replaced by

1
1 − α

log θ(η),

we have

exp
(

1
1 − α

(
1
|S|

∫
S

log θ(η)∆η

))
≤ 1

|S|

∫
S

exp
(

1
1 − α

log θ(η)

)
∆η

=
1
|S|

∫
S

(
exp

(
log θ

1
1−α (η)

))
∆η

=
1
|S|

∫
S

θ
1

1−α (η)∆η. (34)

The left-hand side of (34) can be written as follows:

exp
(

1
1 − α

(
1
|S|

∫
S

log θ(η)∆η

))
=

(
exp

(
1
|S|

∫
S

log θ(η)∆η

)) 1
1−α

. (35)

From (34) and (35), we obtain(
exp

(
1
|S|

∫
S

log θ(η)∆η

)) 1
1−α

≤ 1
|S|

∫
S

θ
1

1−α (η)∆η,
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and then

exp
(

1
|S|

∫
S

log θ(η)∆η

)
≥
(

1
|S|

∫
S

θ
1

1−α (η)∆η

)1−α

. (36)

From (33) and (36), we obtain

1
|S|

∫
S

θ(η)∆η ≤ C exp
(

1
|S|

∫
S

log θ(η)∆η

)
,

which is the desired inequality. The proof is complete.

Remark 1. The lemma proves the inclusion of the Muckenhoupt classes Aα, for α ≥ 1 in the
A∞-class.

Lemma 4. Let θ be a non-negative weight and β be a non negative number. If θ ∈ Gβ for β > 1, then

exp

(
1
|S|

∫
S

θ(η)
1
|S|
∫

S θ(η)∆η
log

(
θ(η)

1
|S|
∫

S θ(η)∆η

)
∆η

)
< ∞, (37)

holds for all S ⊆ [0, ∞)T.

Proof. If θ ∈ Gβ for β > 1, then there exists K > 1 such that

((
1
|S|

∫
S

θβ(η)∆η

)1/β( 1
|S|

∫
S

θ(η)∆η

)−1
)β/(β−1)

≤ K,

for all S ⊆ [0, ∞)T, or equivalently 1
|S|

∫
S

(
θ(η)

1
|S|
∫

S θ(η)∆η

)β

∆η

1/(β−1)

≤ K, (38)

Taking the limit in (38) as β tends to 1, we obtain

K ≥ lim
β→1

 1
|S|

∫
S

(
θ(η)

1
|S|
∫

S θ(η)∆η

)β

∆η

1/(β−1)

= exp

(
1
|S|

∫
S

θ(η)
1
|S|
∫

S θ(η)∆η
log

(
θ(η)

1
|S|
∫

S θ(η)∆η

)
∆η

)
.

The proof is complete.

Remark 2. This lemma proves the inclusion of the Gehring’s classes of weights Gβ in the G1-class.

3. Properties of Muckenhoupt and Gehring Classes

In this section, we prove some basic inclusion properties of Muckenhoupt and Gehring
classes on time scales.

Theorem 1. Let θ be a non-negative weight and α and β be positive real numbers. Then, the
following inclusion properties of Muckenhoupt classes hold:

(1) Aα ⊂ Aβ for all 1 < α ≤ β.
(2) Let 1 < α < ∞, then A1 ⊂ Aα ⊂ A∞.
(3) A∞ =

⋃
1<αAα with A∞ = limα−→∞ Aα and A1 ⊂ ⋂

α>1Aα.
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Proof. (1) Assume that θ ∈ Aα, then there exists a constant C > 1 such that for all
S ⊆ [0, ∞)T, we have that(

1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
≤ C.

Since 1 < α ≤ β, we see that 1/(α − 1) ≥ 1/(β − 1), and then using Property (4) in
Lemma 1, we have that

M 1
α−1

θ−1(η) ≥ M 1
β−1

θ−1(η).

Then, for all S ⊂ S0, we obtain that

C ≥
(

1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1

≥
(

1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

β−1 (η)∆η

)β−1
,

which implies that θ ∈ Aβ.
(2) Since θ ∈ A1(C), then there exists C > 1 such that for all S ⊂ S0, we have

1
|S|

∫
S

θ(η)∆η ≤ Cθ(η), for all η ∈ S. (39)

By using (39), we have for all α > 1 that(
1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1

≤
(

1
|S|

∫
S

θ(η)∆η

) 1
|S|

∫
S

(C−1

|S|

∫
S

θ(x)∆x
) −1

α−1

∆η

 α−1

= C
(

1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ(η)∆η

)−1
= C,

which implies that θ ∈ Aα and then A1 ⊂ Aα. Now, assume that θ ∈ Aα, for α > 1. Then,
by applying Lemma 3, we have

C ≥
(

1
|S|

∫
S

θ(η)∆η

)[
exp

(
1
|S|

∫
S

log θ(η)∆η

)]−1

=

(
1
|S|

∫
S

θ(η)∆η

)[
exp

(
1
|S|

∫
S

log
1

θ(η)
∆η

)]
.

That is, θ ∈ A∞, which implies Aα ⊂ A∞.
(3) By Property (2), for any 1 < α < ∞, Aα ⊂ A∞. Then,⋃

1≤α<∞
Aα ⊆ A∞. (40)

Conversely assume that θ ∈ A∞ and assume, on the contrary, that for all 1 ≤ α < ∞, θ /∈ Aα.
Then, for all 1 ≤ α < ∞, we see that

sup
S⊂S0

(
1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
= ∞,
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which, by taking the limit as α, tends to ∞ implies that

sup
S⊂S0

(
1
|S|

∫
S

θ(η)∆η

)(
exp

(
1
|S|

∫
S

log
1

θ(η)
∆η

))
= ∞.

This contradicts the assumption that θ ∈ A∞. Then, θ ∈ A∞ implies that θ ∈ Aα for some
1 ≤ α < ∞, and hence

θ ∈
⋃

1≤α<∞
Aα.

Thus,
A∞ ⊆

⋃
1≤α<∞

Aα. (41)

From (40) and (41), we obtain A∞ =
⋃

1≤α<∞ Aα. By Property (2), for any α > 1,A1 ⊂ Aα, then

A1 ⊂
⋂

α>1

Aα.

The proof is complete.

Theorem 2. Let θ be a non-negative weight and α and β be non-negative real numbers. Then, the
following inclusion properties of Gehring classes hold:

(1) Gβ ⊂ Gα for all 1 ≤ α ≤ β.
(2) G∞ ⊂ Gβ ⊂ G1 for all 1 ≤ α ≤ ∞.
(3) G1 =

⋃
1<β≤∞ Gβ, 1 < β < ∞ with G1(θ) = limβ→1Gβ(θ).

Proof. (1) If θ ∈ Gβ(K) on a time scale, then there exists K > 1 such that for all S ⊆ [0, ∞)T,
the inequality (

1
|S|

∫
S

θβ(η)∆η

)1/β

≤ K
1
|S|

∫
S

θ(η)∆η, (42)

holds. Property (4) in Lemma 1 implies that Mαθ ≤ Mβθ for all α ≤ β. Then, for S ⊂ S0,
we have (

1
|S|

∫
S

θα(η)∆η

)1/α

≤
(

1
|S|

∫
S

θβ(η)∆η

)1/β

. (43)

Then, by substituting (43) into (42), we have(
1
|S|

∫
S

θα(η)∆η

)1/α

≤
(

1
|S|

∫
S

θβ(η)∆η

)1/β

≤ K
1
|S|

∫
S

θ(η)∆η.

That is, θ ∈ Gα, which is the desired result.
(2) If θ ∈ G∞, then by the definition of G∞, there exists 0 < C < ∞, such that for all

S ⊆ [0, ∞)T,

θ(η) ≤ C 1
|S|

∫
S

θ(η)∆η, (44)

holds. For all 1 < β < ∞, by applying (44), we have(
1
|S|

∫
S

θβ(η)∆η

)1/β( 1
|S|

∫
S

θ(η)∆η

)−1

≤
(

1
|S|

∫
S

(
C 1
|S|

∫
S

θ(η)∆η

)β
)1/β(

1
|S|

∫
S

θ(η)∆η

)−1

≤ C
(

1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ(η)∆η

)−1
= C.
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That is, θ ∈ Gβ, and hence G∞ ⊂ Gβ and the inclusion Gβ ⊂ G1 are proved in Lemma 4.
This is the desired result.

(3) From Property (2), we have that Gβ ⊂ G1 for all 1 < β ≤ ∞, and then⋃
1<β≤∞

Gβ ⊂ G1 (45)

Conversely, let θ ∈ G1 and assume, on the contrary, that θ /∈ Gβ for all 1 < β ≤ ∞. That is,
for all β > 1, we have

sup
S⊆[0,∞)T

((
1
|S|

∫
S

θβ(η)∆η

)1/β( 1
|S|

∫
S

θ(η)∆η

)−1
)β/(β−1)

= ∞. (46)

Taking the limit on both sides of (46) as β tends to 1, we have

sup
S⊆[0,∞)T

(
exp

(
1
|S|

∫
S

θ(η)
1
|S|
∫

S θ(η)∆η
log

(
θ(η)

1
|S|
∫

S θ(η)∆η

)
∆η

))
= ∞.

This contradicts the assumption that θ ∈ G1, which implies that θ ∈ Gβ for some β > 1
and then

G1 ⊆
⋃

1<β≤∞

Gβ. (47)

From (45) and (47), we have G1 =
⋃

1<β≤∞Gβ. The proof is complete.

Here, we prove some additional properties of the Muckenhoupt classes of weights on
time scales. We define the Aα-norm of the weight θ on time scales by

[Aα(θ)] := sup
S⊆[0,∞)T

(
1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
,

and we define A1-norm on time scales by

[A1(θ)] := sup
S⊆[0,∞)T

1
|S|

(
1

θ(η)

∫
S

θ(η)∆η

)
.

We define the A∞-norm on time scales by

[A∞(θ)] := sup
S⊆[0,∞)T

(
1
|S|

∫
S

θ(η)∆η

)(
exp

(
1
|S|

∫
S

log
1

θ(η)
∆η

))
,

and the Gβ-norm is defined by

[Gβ(θ)] := sup
S⊆[0,∞)T

[(
1
|S|

∫
S

θβ(η)∆η

) 1
β
(

1
|S|

∫
S

θ(η)∆η

)−1
] β

β−1

.

Theorem 3. Let θ be a non-negative weight and α and β be positive real numbers. Then, the
following properties hold:

(1) θ ∈ Aα if and only if θ1−α
′
∈ A

α
′ with

[
A

α
′ (θ1−α

′
)
]
= [Aα(θ)]α

′−1, where α
′

is the
conjugate of α.

(2) If θ ∈ Aα, for 1 ≤ α < ∞, then for each 0 < ϵ < 1 such that θϵ ∈ Aϵα+1−ϵ.
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Proof. (1) From the definition of the class Aα and since 1 − α
′
= 1/(1 − α) < 0, we have

for C > 1 that

θ ∈ Aα ⇐⇒
(

1
|S|

∫
S

θ(η)∆η

)
≤ C

(
1
|S|

∫
S

θ
1

1−α (η)∆η

)1−α

⇐⇒
(

1
|S|

∫
S

θ(η)∆η

) 1
1−α

≥ C
1

1−α
1
|S|

∫
S

θ
1

1−α (η)∆η

⇐⇒ 1
|S|

∫
S

θ1−α′(η)∆η ≤ Cα
′−1
(

1
|S|

∫
S
(θ1−α

′
(η))

1
1−α′ ∆η

)1−α
′

⇐⇒ θ1−α
′
∈ A

α
′ ,

with [
A

α
′ (θ1−α

′
)

]
= [Aα(θ)]

α
′−1.

This is the desired result.
(2) Let 1 ≤ α < ∞, 0 < ϵ < 1 and r = ϵα + 1 − ϵ, then r − 1 = ϵ(α − 1) and by

applying Lemma 1 for ϵ < 1. Then, we have(
1
|S|

∫
S

θϵ(η)∆η

)(
1
|S|

∫
S
(θϵ(η))

−1
r−1 ∆η

)r−1

=

(
1
|S|

∫
S

θϵ(η)∆η

)(
1
|S|

∫
S

θ
−ϵ
r−1 (η)∆η

)r−1

≤
(

1
|S|

∫
S

θ(η)∆η

)ϵ( 1
|S|

∫
S

θ
−1

α−1 (η)∆η

)ϵ(α−1)
≤ Cϵ,

hence, θϵ ∈ Aϵα+1−ϵ. This is the desired result. This completes our proof.

In the next theorem, we discuss the power rule for weights in the Muckenhoupt classes
on time scales.

Theorem 4. Let 1 < α < ∞ be a positive real number. Then, the following properties hold:

(1) If θ ∈ Aα, then θα ∈ Aα, for 0 ≤ α ≤ 1, with [Aα(θα)] ≤ [Aα(θ)]α.
(2) If θ1, θ2 ∈ Aα, then θα

1 θ1−α
2 ∈ Aα, for 0 ≤ α ≤ 1, with[

Aα(θ
α
1 θ1−α

2 )
]
≤ [Aα(θ1)]

α[Aα(θ2)]
1−α.

Proof. (1) For 0 ≤ α ≤ 1 and θ ∈ Aα on time scales, we have 1/(α−1) ≥ α/(α−1) > 0,
and by Lemma 1 for α < 1 for all S ⊆ [0, ∞)T, we have(

1
|S|

∫
S

θα(η)∆η

)(
1
|S|

∫
S
(θα)

−1
α−1 (η)∆η

)α−1

=

(
1
|S|

∫
S

θα(η)∆η

)(
1
|S|

∫
S

θ
−α

α−1 (η)∆η)

)α−1

≤
(

1
|S|

∫
S

θ(η)∆η

)α( 1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α(α−1)

=

[(
1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)(α−1)
]α

≤ Cα,

that is, θα ∈ Aα, with [Aα(θα)] ≤ [Aα(θ)]α. This is the desired result.
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(2) Since θ1, θ2 ∈ Aα, on time scales, we obtain that

1
|S|

∫
S

θ1(η)∆η

(
1
|S|

∫
S

θ
−1

α−1
1 (η)∆η

)α−1
≤ C1, (48)

and
1
|S|

∫
S

θ2(η)∆η

(
1
|S|

∫
S

θ
−1

α−1
2 (η)∆η

)α−1
≤ C2, (49)

where C1, C2 > 1. By applying Hölder’s inequality on time scales (note that 0 ≤ α ≤ 1)
with 1/α > 1 and 1/(1 − α) and using (48) and (49), we have

1
|S|

∫
S

θ1
α(η)θ2

1−α(η)∆η

≤
(

1
|S|

∫
S

θ1(η)∆η

)α( 1
|S|

∫
S

θ2(η)∆η

)1−α

≤
((

C1

|S|

∫
S

θ
1

1−α
1 (η)∆η

)1−α
)α((

C2

|S|

∫
S

θ
1

1−α
2 (η)∆η

)1−α
)1−α

= C1
αC2

1−α

((
1
|S|

∫
S

θ
1

1−α
1 (η)∆η

)α( 1
|S|

∫
S

θ
1

1−α
2 (η)∆η

)1−α
)1−α

. (50)

By applying the Hölder inequality on time scales with 1/α and 1/(1 − α) on the term

1
|S|

∫
S

θ
α

1−α
1 (η)θ2

1−α
1−α (η)∆η,

we have

1
|S|

∫
S

θ1
α

1−α (η)θ2
1−α
1−α (η)∆η

≤
(

1
|S|

∫
S

θ
1

1−α
1 (η)∆η

)α( 1
|S|

∫
S

θ
1

1−α
2 (η)∆η

)1−α

. (51)

By substituting (51) into (50), and since 1 − α < 0, we have

1
|S|

∫
S

θ1
α(η)θ2

1−α(η)∆η ≤ C1
αC2

1−α

[
1
|S|

∫
S

θ1
α

1−α (η)θ2
1−α
1−α (η)∆η

]1−α

= C1
αC2

1−α

[
1
|S|

∫
S
(θ1

α(η)θ2
1−α(η) )

1
1−α ∆η

]1−α

.

This proves that θ1, θ2 ∈ Aα implies that θα
1 θ1−α

2 ∈ Aα, for 0 ≤ α ≤ 1, with[
Aα(θ

α
1 θ1−α

2 )
]
≤ [Aα(θ1)]

α[Aα(θ2)]
1−α.

The proof is complete.

Theorem 5. Let θ be a non-negative weight and α be a non negative real number. If θ ∈ Aα, then
1
θ ∈ G

α
′−1.

Proof. Let θ ∈ Aα, then there exists a constant C > 1 such that the inequality

1
|S|

∫
S

θ(η)∆η ≤ C
(

1
|S|

∫
S

θ1/(1−α)(η)∆η

)1−α

, (52)
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holds for all S ⊂ S0. From Property (1) in Lemma 1, we have(
1
|S|

∫
S

1
θ(η)

∆η

)−1
≤ 1

|S|

∫
S

θ(η)∆η,

and (52) becomes (
1
|S|

∫
S
(

1
θ
)1/(α−1)(η)∆η

)α−1
≤ C 1

|S|

∫
S

1
θ(η)

∆η.

That is, 1
θ ∈ G

α
′−1. The proof is complete.

Theorem 6. Suppose that 1 < α1 < α2 < ∞, 0 < δ < 1 and θ1, θ2 ∈ Aα. Then, the following
properties hold:

(1) If α = δα1 + (1 − δ)α2, then[
Aα(θ

δ
1θ

1−δ

2 )
]
≤ [Aα1(θ1)]

δ[Aα2(θ2)]
1−δ

, (53)

(2) If α =
(

δ
α1

+ 1−δ
α2

)−1
, then[

Aα(θ
δα/α1
1 θ

(1−δ)α/α2

2 )

]
≤ [Aα1(θ1)]

δα/α1 [Aα2(θ2)]
(1−δ)α/α2 . (54)

Proof. (1) Since θ1, θ2 ∈ Aα, then

Aα(θ
δ
1θ1−δ

2 )

=

(
1
|S|

∫
S

θδ
1(η)θ

1−δ
2 (η)∆η

)(
1
|S|

∫
S
[θδ

1(η)θ
1−δ
2 (η)]

−1
α−1 ∆η

)α−1

=

(
1
|S|

∫
S

θδ
1(η)θ

1−δ
2 (η)∆η

)(
1
|S|

∫
S

θ
−δ

α−1
1 (η)θ

−(1−δ)
α−1

2 (η)∆η

)α−1

, (55)

for all S ⊆ [0, ∞)T. By applying Hölder’s inequality on time scales with 1/δ > 1 and
1/(1 − δ), we obtain

1
|S|

∫
S

θδ
1(η)θ

1−δ
2 (η)∆η

≤
(

1
|S|

∫
S

θ1(η)∆η

)δ( 1
|S|

∫
S

θ2(η)∆η

)1−δ

. (56)

Since 1 < α1 < α2 < ∞, 0 < δ < 1, (0 < 1 − δ < 1), we can easily see that

α = δα1 + (1 − δ)α2 > δα1 + (1 − δ)α1 = α1 > 1.

and by using the fact that (1 − δ)α2 > (1 − δ), we have

α = δα1 + (1 − δ)α2 > δα1 + 1 − δ = δ(α1 − 1) + 1,

and then
(α − 1)/[δ(α1 − 1)] > 1. (57)
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From (57) and by applying Hölder’s inequality on time scales with (α − 1)/[δ(α1 − 1)] > 1
and (α − 1)/[(1 − δ)(α2 − 1)], and taking into account that α = δα1 + (1 − δ)α2, we obtain

1
|S|

∫
S

θ
−δ

α−1
1 (η)θ

−(1−δ)
α−1

2 (η)∆η

≤
(

1
|S|

∫
S

θ
−1

α1−1
1 (η)∆η

) δ(α1−1)
α−1

(
1
|S|

∫
S

θ
−1

α2−1
2 (η)∆η

) (1−δ)(α2−1)
α−1

. (58)

By using (56) and (58), (55) becomes

Aα(θ
δ
1θ1−δ

2 )

≤
(

1
|S|

∫
S

θ1(η)∆η

)δ( 1
|S|

∫
S

θ2(η)∆η

)1−δ

×

( 1
|S|

∫
S

θ
−1

α1−1
1 (η)∆η

) δ(α1−1)
α−1

(
1
|S|

∫
S

θ
−1

α2−1
2 (η)∆η

) (1−δ)(α2−1)
α−1

α−1

=

[(
1
|S|

∫
S

θ1(η)∆η

)(
1
|S|

∫
S

θ
−1

α1−1
1 (η)∆η

)α1−1]δ

×
[(

1
|S|

∫
S

θ2(η)∆η

)(
1
|S|

∫
S

θ
−1

α2−1
2 (η)∆η

)α2−1]1−δ

.

Taking supremum over all S ⊆ [0, ∞)T, we obtain the desired result (53).
(2) Assume that θ1, θ2 ∈ Aα, then

Aα(θ
δα/α1
1 θ

(1−δ)α/α2
2 ) =

(
1
|S|

∫
S

θδα/α1
1 (η)θ

(1−δ)α/α2
2 (η)∆η

)
×
(

1
|S|

∫
S
[θδα/α1

1 (η)θ
(1−δ)α/α2
2 (η)]

−1
α−1 ∆η

)α−1
,

=

(
1
|S|

∫
S

θδα/α1
1 (η)θ

(1−δ)α/α2
2 (η)∆η

)

×
(

1
|S|

∫
S

θ
−δα

α1(α−1)
1 (η)θ

−(1−δ)α
α2(α−1)

2 (η)∆η

)α−1

. (59)

For 0 < γ = δα/α1 < 1, we have 1 − γ = (1 − δ)α/α2, and hence (59) can be written as

Aα(θ
γ
1 θ

1−γ
2 )

=

(
1
|S|

∫
S

θ
γ
1 (η)θ

1−γ
2 (η)∆η

)(
1
|S|

∫
S
[θγ

1 (η)θ
1−γ
2 (η)]

−1
α−1 ∆η

)α−1
. (60)

By applying Hölder’s inequality on time scales with exponents 1/γ > 1 and 1/(1 − γ),
we obtain(

1
|S|

∫
S

θ
γ
1 (η)θ

1−γ
2 (η)∆η

)
≤
(

1
|S|

∫
S

θ1(η)∆η

)γ( 1
|S|

∫
S

θ2(η)∆η

)1−γ

, (61)
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and by applying Hölder’s inequality on time scale with exponents (α − 1)/[γ(α1 − 1)] > 1

and (α − 1)/[(1 − γ)(α2 − 1)] and taking into account that α =
(

δ
α1

+ 1−δ
α2

)−1
, we obtain

1
|S|

∫
S

θ
−γ
α−1
1 (η)θ

−(1−γ)
α−1

2 (η)∆η

≤
(

1
|S|

∫
S

θ
−1

α1−1
1 (η)∆η

) γ(α1−1)
α−1

(
1
|S|

∫
S

θ
−1

α2−1
2 (η)∆η

) (1−γ)(α2−1)
α−1

. (62)

By substituting (61) and (62) into (60), we have

Aα(θ
γ
1 θ

1−γ
2 )

≤
(

1
|S|

∫
S

θ1(η)∆η

)γ( 1
|S|

∫
S

θ2(η)∆η

)1−γ

×

( 1
|S|

∫
S

θ
−1

α1−1
1 (η)∆η

) γ(α1−1)
α−1

(
1
|S|

∫
S

θ
−1

α2−1
2 (η)∆η

) (1−γ)(α2−1)
α−1

α−1

=

[(
1
|S|

∫
S

θ1(η)∆η

)(
1
|S|

∫
S

θ
−1

α1−1
1 (η)∆η

)α1−1]γ

×
[(

1
|S|

∫
S

θ2(η)∆η

)(
1
|S|

∫
S

θ
−1

α2−1
2 (η)∆η

)α2−1]1−γ

.

Taking supremum over all S ⊆ [0, ∞)T, we obtain the desired result (54). The proof is
complete.

Theorem 7. Let 1 < α < ∞ be a positive real number. Then, the following properties hold:

(1) If θ1, θ2 ∈ Aα, then θδ/r
1 θ2

(1−δ)/α ∈ Aα, for α > 1, 0 < r < 1 with δ = (1 − 1
α )/(

1
r −

1
α ),

and [
Aα(θ

δ/r
1 θ2

(1−δ)/α)
]
≤ [Aα(θ1)]

δ/r[Aα(θ2)]
(1−δ)/α,

(2) θ ∈ Aα if and only if θ and θ
1

1−α are in A∞.

Proof. (1) Assume that θ1, θ2 ∈ Aα, then

Aα(θ
δ/r
1 θ

(1−δ)/α
2 ) =

(
1
|S|

∫
S

θδ/r
1 (η)θ

(1−δ)/α
2 (η)∆η

)
×
(

1
|S|

∫
S
[θδ/r

1 (η)θ
(1−δ)/α
2 (η)]

−1
α−1 ∆η

)α−1

=

(
1
|S|

∫
S

θδ/r
1 (η)θ

(1−δ)/α
2 (η)∆η

)(
1
|S|

∫
S

θ
−δ

r(α−1)
1 (η)θ

−(1−δ)
α(α−1)

2 (η)∆η

)α−1

, (63)

for all S ⊆ [0, ∞)T. Note that 0 < δ < 1 and δ/r + (1 − δ)/α = 1, then by letting γ = δ/r,
we have 1 − γ = (1 − δ)/α, and (63) can be written as

Aα(θ
γ
1 θ

1−γ
2 )

=

(
1
|S|

∫
S

θ
γ
1 (η)θ

1−γ
2 (η)∆η

)(
1
|S|

∫
S

θ
−γ
α−1
1 (η)θ

−(1−γ)
α−1

2 (η)∆η

)α−1

. (64)
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By applying Hölder’s inequality on time scales with exponents 1/γ > 1 and 1/(1 − γ),
we obtain (

1
|S|

∫
S

θ
γ
1 (η)θ

1−γ
2 (η)∆η

)
≤

(
1
|S|

∫
S

θ1(η)∆η

)γ( 1
|S|

∫
S

θ2(η)∆η

)1−γ

, (65)

and

1
|S|

∫
S

θ
−γ
α−1
1 (η)θ

−(1−γ)
α−1

2 (η)∆η

≤
(

1
|S|

∫
S

θ
−1

α−1
1 (η)∆η

)γ( 1
|S|

∫
S

θ
−1

α−1
2 (η)∆η

)1−γ

. (66)

By substituting (65) and (66) into (64), we have

Aα(θ
γ
1 θ

1−γ
2 ) ≤

(
1
|S|

∫
S

θ1(η)∆η

)γ( 1
|S|

∫
S

θ2(η)∆η

)1−γ

×
((

1
|S|

∫
S

θ
−1

α−1
1 (η)∆η

)γ( 1
|S|

∫
S

θ
−1

α−1
2 (η)∆η

)1−γ
)α−1

=

((
1
|S|

∫
S

θ1(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1
1 (η)∆η

)α−1
)γ

×
((

1
|S|

∫
S

θ2(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1
2 (η)∆η

)α−1
)1−γ

.

Taking supremum over all S ⊆ [0, ∞)T, we obtain the desired result[
Aα(θ

δ/r
1 θ2

(1−δ)/α)
]
≤ [Aα(θ1)]

δ/r[Aα(θ2)]
(1−δ)/α

.

(2) Using Property (3) in Theorem 1, since A∞ =
⋃

1≤α<∞ Aα, it is clear that θ ∈ Aα,
for some α > 1, if and only if θ ∈ A∞. Now, we have by Property (1) in Theorem 3 that

θ ∈ Aα, if and only if θ1−α
′
= θ1/(1−α) ∈ A

α
′ . That is, (since A

α
′ ⊂ A∞), θ ∈ Aα if and only

if θ1/(1−α) ∈ A∞. The proof is complete.

4. Some Fundamental Relations

In this section, we prove some fundamental relations connecting different Mucken-
houpt and Gehring classes.

Theorem 8. Let θ be a non-negative weight.

(i) For α > 1, we have

[A2(θ
1

α−1 )]α−1 ≤ [Aα(θ)]
[
Aα(θ

−1)
]
. (67)

(ii) For 1 < α ≤ 2, we have

[Aα(θ)] ≤ [A2(θ
1

α−1 )]α−1. (68)

(iii) For α > 1, we have

[A2(θ)] ≤ [Aα(θ)]
[
Aα(θ

−1)
]
. (69)
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Proof. From Property (1) of Lemma 1, we have(
1
|S|

∫
S

θ−1(η)∆η

)−1
≤ 1

|S|

∫
S

θ(η)∆η,

for all S ⊆ [0, ∞)T. Thus,(
1
|S|

∫
S

θ−1(η)∆η

)(
1
|S|

∫
S

θ(η)∆η

)
≥ 1,

and hence [(
1
|S|

∫
S

θ
1

α−1 (η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)]α−1

=

(
1
|S|

∫
S

θ
1

α−1 (η)∆η

)α−1( 1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1

≤
(

1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1

×
(

1
|S|

∫
S

θ−1(η)∆η

)(
1
|S|

∫
S

θ
1

α−1 (η)∆η)

)α−1

≤ Aα(θ)Aα(θ
−1),

By taking supremum over all S ⊆ [0, ∞)T, we obtain (67). Also, for S ⊂ S0, 1 < α ≤ 2, we
have 1 ≤ 1/(α − 1) and Lemma 1 implies that

1
|S|

∫
S

θ(η)∆η ≤
(

1
|S|

∫
S

θ
1

α−1 (η)∆η

)α−1

hence (
1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1

≤
[(

1
|S|

∫
S

θ
1

α−1 (η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)]α−1
≤ [A2(θ

1
α−1 )]α−1.

Taking supremum over all S ⊆ [0, ∞)T, we obtain (68). If α > 1, assume that

[Aα(θ)]
[
Aα(θ

−1)
]
= C < ∞.

By Property (1) in Theorem 3, we have [Aα(θ)] = [Aα′(θ
−1

α−1 )]α−1, where α′ =α/(α−1), then([
Aα′(θ

1
α−1 )

][
Aα′(θ

−1
α−1 )

])α−1
= C.

Replacing θ with θ1/(α−1) and α with α′ in (67), we obtain

[A2((θ
1

α−1 )
1

α′−1 )]α
′−1 ≤

[
Aα′(θ

1
α−1 )

][
Aα′(θ

−1
α−1 )

]
.

But (α − 1)(α′ − 1) = 1, hence
[A2(θ)] ≤ C.

That is, (69) holds. The proof is complete.
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Theorem 9. Let θ be a non-negative weight and α is a positive real number. Then,

max{[A∞(θ)], [A∞(θ1−α
′
)]α−1} ≤ [Aα(θ)] ≤ [A∞(θ)][A∞(θ1−α

′
)]α−1. (70)

Proof. For α ≤ β, we have Aα(θ) ≥ Aβ(θ), and thus

[A∞(θ)] ≤ [Aα(θ)]. (71)

Furthermore, for β < ∞, we have

[Aβ(θ
1−α

′
)]α−1

= sup
S⊆[0,∞)T

{(
1
|S|

∫
S

θ1−α
′
(η)∆η

)(
1
|S|

∫
S

θ(1−α
′
)(1−β

′
)(η)∆η

)β−1
}α−1

= sup
S⊆[0,∞)T

{(
1
|S|

∫
S

θ1−α
′
(η)∆η

)α−1( 1
|S|

∫
S

θ(1−α
′
)(1−β

′
)(η)∆η

)(β−1)(α−1)
}

= sup
S⊆[0,∞)T

(
1
|S|
∫

S θ(η)∆η
)(

1
|S|
∫

S θ
−1

α−1 (η)∆η
)α−1

(
1
|S|
∫

S θ(η)∆η
)(

1
|S|
∫

S θ(1−α
′ )(1−β

′ )(η)∆η
)−(β−1)(α−1)

≤ Aα(θ). (72)

Taking the limit in (72) as β tends to ∞, we have

[A∞(θ1−α
′
)]α−1 ≤ [Aα(θ)]. (73)

From (71) and (73), then

max{[A∞(ŵ)], [A∞(ŵ1−α
′
)]α−1} ≤ [Aα(θ)].

Now, for the second inequality, we have

1
|S|

∫
S

θ(η)∆η

(
1
|S|

∫
S

θ1−α
′
(η)∆η

)α−1

=
1
|S|

∫
S

θ(η)∆η

(
1
|S|

∫
S

θ1−β
′
(η)∆η

)β−1

×

 1
|S|

∫
S

θ1−α
′
(η)∆η

(
1
|S|

∫
S

θ1−β
′
(η)∆η

) 1−β
α−1

α−1

. (74)

Since 1 − β and 1 − β
′
< 0, then by Lemma 1 for 1 − β′ < β′ − 1, we have

1
|S|

∫
S

θ1−α
′
(η)∆η

(
1
|S|

∫
S

θ1−β
′
(η)∆η

) 1−β
α−1

≤ 1
|S|

∫
S

θ1−α
′
(η)∆η

(
1
|S|

∫
S

θβ
′−1(η)∆η

) β−1
α−1

=
1
|S|

∫
S

θ1−α′(η)∆η

(
1
|S|

∫
S

θ(1−α
′
)(β′−1)/(1−α

′
)(η)∆η

) β−1
α−1

. (75)

By setting r − 1 = (β − 1)/(α − 1), we have

r
′ − 1 =

1
r − 1

=
α − 1
β − 1

=
β
′ − 1

α
′ − 1

.
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Hence, from (74) and (75), we have

1
|S|

∫
S

θ(η)∆η

(
1
|S|

∫
S

θ1−α
′
(η)∆η

)α−1

≤ 1
|S|

∫
S

θ(η)∆η

(
1
|S|

∫
S

θ1−β
′
(η)∆η

)β−1

×
[

1
|S|

∫
S

θ1−α
′
(η)∆η

(
1
|S|

∫
S

θ(1−α
′
)(1−r

′
)(η)∆η

)r−1
]α−1

.

Taking supremum over all S ⊆ [0, ∞)T, we have the desired inequality

[Aα(θ)] ≤
[
Aβ(θ)

]
[Ar(θ

1−α
′
)]α−1. (76)

Now, by taking the limit on the both of sides of (76) as β tends to ∞, we have

[Aα(θ)] ≤ [A∞(θ)][A∞(θ1−α
′
)]α−1.

The proof is complete.

Theorem 10. Let θ be a non-negative weight and α, r > 1 positive real numbers. Then, θ ∈
Aα ∩Gr if and only if θr ∈ Aβ, for β = r(α − 1) + 1.

Proof. First, assume that θ ∈ Aα ∩Gr, then θ ∈ Aα and θ ∈ Gr. That is, there exists a
constant C > 1 such that(

1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
≤ C, (77)

for all S ⊆ [0, ∞)T, and there exists a constant K > 1 such that(
1
|S|

∫
S

θr(η)∆η

)1/r
≤ K

(
1
|S|

∫
S

θ(η)∆η

)
. (78)

From (78), we see that

1
|S|

∫
S

θr(η)∆η ≤ Kr
(

1
|S|

∫
S

θ(η)∆η

)r
. (79)

Since β = r(α − 1) + 1, then 1/(α − 1) = r/(β − 1), and from (77), we have

(
1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−r

β−1 (η)∆η

) β−1
r

≤ C,

then (
1
|S|

∫
S
(θ

r
)

−1
β−1 (η)∆η

)β−1
≤ Cr

(
1
|S|

∫
S

θ(η)∆η

)−r
. (80)

From (79) and (80), we see that(
1
|S|

∫
S

θr(η)∆η

)(
1
|S|

∫
S
(θ

r
)

−1
β−1 (η)∆η

)β−1

≤ CrKr
(

1
|S|

∫
S

θ(η)∆η

)r( 1
|S|

∫
S

θ(η)∆η

)−r
= CrKr,
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which implies that θr ∈ Aβ. Conversely, since θr ∈ Aβ for β = r(α − 1) + 1, then there
exists C1 > 1 such that(

1
|S|

∫
S

θr(η)∆η

)(
1
|S|

∫
S
(θ

r
)

−1
β−1 (η)∆η

)β−1
≤ C1

Since β − 1 = r(α − 1), then(
1
|S|

∫
S

θr(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)r(α−1)
≤ C1,

and (
1
|S|

∫
S

θr(η)∆η

) 1
r
(

1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
≤ C

1
r

1 . (81)

From (81), by using Lemma 1, we obtain

(
1
|S|

∫
S

θr(η)∆η

) 1
r
≥ 1

|S|

∫
S

θ(η)∆η. (82)

From (81) and (82), we obtain(
1
|S|

∫
S

θ(η)∆η

)(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
≤ C

1
r

1 , (83)

which implies that θ ∈ Aα, and by using Lemma 1 with −1/(α − 1) < 0, we have

(
1
|S|

∫
S

θ(η)∆η

) −1
α−1

≤ 1
|S|

∫
S

θ
−1

α−1 (η)∆η,

and (
1
|S|

∫
S

θ(η)∆η

)−1
≤
(

1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
.

From this and (81), we obtain that(
1
|S|

∫
S

θ(η)∆η

)−1( 1
|S|

∫
S

θr(η)∆η

) 1
r
≤ C

1
r ,

or equivalently (
1
|S|

∫
S

θr(η)∆η

) 1
r
≤ C

1
r

(
1
|S|

∫
S

θ(η)∆η

)
, (84)

which implies that θ ∈ Gr. From (83) and (84), we obtain θ ∈ Aα ∩ Gr. The proof is
complete.

Theorem 11. Let α be a positive real number and θ be a non-negative weight . Then, the following
properties hold:

(1) If 1 < r < ∞, then
[A∞(θr)]1/r

[A∞(θ)]
≤ [Gr(θ)] ≤ [A∞(θr)]1/r.

(2) If θ ∈ ⋂α>1 Aα then 1/θ ∈ ⋂r<∞ Gr.

Proof. (1) From the definition of Gr(θ), we have for all S ⊆ [0, ∞)T that(
1
|S|

∫
S

θr(η)∆η

)
≤ [Gr(θ)]

r
(

1
|S|

∫
S

θ(η)∆η

)r
.
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By multiplying both sides by 1
|S|
∫

S θ−r/(α−1)(η)∆η)α−1, for α < ∞, we obtain that

(
1
|S|

∫
S

θr(η)∆η

)(
1
|S|

∫
S

θ
−r

α−1 (η)∆η

)α−1

≤ [Gr(θ)]
r

(
1
|S|

∫
S

θ(η)∆η

(
1
|S|

∫
S

θ
−r

α−1 (η)∆η

) α−1
r
)r

. (85)

Taking supremum over all S ⊆ [0, ∞)T in (85), we have

sup
S

(
1
|S|

∫
S

θr(η)∆η

)(
1
|S|

∫
S

θ
−r

α−1 (η)∆η

)α−1

≤ [Gr(θ)]
r sup

S

(
1
|S|

∫
S

θ(η)∆η

(
1
|S|

∫
S

θ
−r

α−1 (η)∆η

) α−1
r
)r

,

or equivalently

[Aα(θ
r)] ≤ [Gr(θ)]

r
[
A r+α−1

r
(θ)
]r

.

As α tends to ∞, we have that

[A∞(θr)]1/r

[A∞(θ)]
≤ [Gr(θ)],

which is the left-side inequality. For the second inequality, from the definition of [Aα(θr)]1/r,
we have for all S ⊆ [0, ∞)T that

(
1
|S|
∫

S θr(η)∆η
)1/r

1
|S|
∫

S θ(η)∆η
=

(
1
|S|
∫

S θr(η)∆η
)1/r( 1

|S|
∫

S θ
−r

α−1 (η)∆η
) α−1

r

1
|S|
∫

S θ(η)∆η
(

1
|S|
∫

S θ
−r

α−1 (η)∆η
) α−1

r
. (86)

By Lemma 1 and since −r/(α − 1) < 0 < 1, we see that

1
|S|

∫
S

θ
−r

α−1 (η)∆η ≥
(

1
|S|

∫
S

θ(η)∆η

) −r
α−1

,

which implies that
1

1
|S|
∫

Sθ(η)∆η
(

1
|S|
∫

S θ
−r

α−1 (η)∆η
)− α−1

r
≤ 1.

Using this in (86), we obtain that(
1
|S|
∫

S θr(η)∆η
)1/r

1
|S|
∫

S θ(η)∆η
≤
(

1
|S|

∫
S

θr(η)∆η

(
1
|S|

∫
S

θ
−r

α−1 (η)∆η

) α−1
r
)1/r

.

Taking the supremum in (86) over all S ⊆ [0, ∞)T, we have [Gr(θ)] ≤ [Aα(θr)]1/r. As α
tends to ∞, we have

[Gr(θ)] ≤ [A∞(θr)]1/r.

(2) If θ ∈ ⋂α>1 Aα, then(
1
|S|

∫
S

θ
−1

α−1 (η)∆η

)α−1
≤ C

(
1
|S|

∫
S

θ(η)∆η

)−1
, (87)
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holds for all α > 1. From (87), by using Lemma 1, we obtain that(
1
|S|

∫
S

(
1

θ(η)

)
1

α−1 ∆η

)α−1
≤ C

(
1
|S|

∫
S

1
θ(η)

∆η

)
.

Hence, (1/θ) ∈ Gr for all 0 < r = 1/(α − 1) < ∞, we have 1/θ ∈ ⋂
r<∞ Gr. The proof is

complete.

5. Conclusions

In this paper, we proved some fundamental properties of the Muckenhoupt class Ap of
weights and the Gehring class Gq of weights on time scales. We also proved some relations
between them. The approach is based on proving some properties of integral operators
on time scales with powers and certain mathematical relations connecting the norms of
Muckenhoupt and Gehring classes. The results as special cases when the time scale equals
the real numbers cover the results following David Cruz-Uribe, C. J. Neugebauer, and A.
Popoli, and when the time scale equals the positive integers, the results can be obtained
directly from the above results. These results, to the best of the authors’ knowledge, are
essentially new.
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