Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations
Abstract
:1. Introduction
2. Generalized Fractional Integral Inequalities via Special Green’s Functions
- (i)
- If is an increasing function, then
- (ii)
- If is decreasing function, then
- (iii)
- If is a convex function, then
- (i)
- If is an increasing function, then
- (ii)
- If is a decreasing function, then
- (iii)
- If is a convex function, then
3. Some Relations of Means with Trapezoid Formulae
- (i)
- The Arithmetic mean:
- (ii)
- The Harmonic mean:
- (iii)
- The logarithmic mean:
- (iv)
- The generalized logarithmic mean presented in [54] is defined as follows:
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azpeitia, A.G. Convex functions and the Hadamard inequality. Rev. Colomb. Mat. 1994, 28, 7–12. [Google Scholar]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C. Selected Topics on Hermite–Hadamard Inequalities and Applications. Sci. Direct Work. Pap. 2003, 4, S1574-0358. [Google Scholar]
- Set, E.; Özdemir, M.; Dragomir, S.S. On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. 2010, 2010, 286845. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Budak, H. Generalizations of fractional Hermite–Hadamard-mercer like inequalities for convex functions. AIMS Math. 2021, 6, 9397–9421. [Google Scholar] [CrossRef]
- Nápoles Valdés, J.E.; Rodríguez, J.M.; Sigarreta, J.M. New Hermite–Hadamard type inequalities involving non-comformable integral operators. Symmetry 2019, 11, 1108. [Google Scholar] [CrossRef]
- Bosch, P.; Carmenate, H.J.; Rodríguez, J.M.; Sigarreta, J.M. Generalized inequalities involving fractional operators of Riemann-Liouville type. AIMS Math. 2021, 7, 1470–1485. [Google Scholar] [CrossRef]
- Guzmán, P.M.; Valdés, J.E.N.; Stojiljkovic, V. New extensions of Hermite–Hadamard inequality. Contrib. Math. 2023, 7, 60–66. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; García, C. Ostrowski type inequalities for functions whose derivatives are (m,h1,h2)-convex. Appl. Math. Inf. Sci. 2017, 11, 79–86. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Saleem, M.S.; Sajid, S. Fractional version of Hermite–Hadamard-Mercer inequalities for convex stochastic processes via Ψk-Riemann-Liouville fractional integrals and its applications. Appl. Math. Inf. Sci. 2022, 16, 695–709. [Google Scholar]
- Bayraktar, B.; Népoles, J.E.; Rabossi, F. On generalizations of integral inequalities. Probl. Anal. Issues Anal. 2022, 11, 3–23. [Google Scholar] [CrossRef]
- Mehmood, S.; Valdes, J.E.N.; Fatima, N.; Aslam, W. Some integral inequalities via fractional derivatives. Euro-Tbil. Math. J. 2022, 15, 31–44. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; Sen, M.D.L. Hermite–Hadamard type inequalities involving k-fractional operator for (h, m)-convex functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Ivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Interval valued Hadamard-Fejer and Pachpatte type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Math. 2022, 7, 15041–15063. [Google Scholar] [CrossRef]
- Baleanu, D.; Samraiz, M.; Perveen, Z.; Iqbal, S.; Nisar, K.S.; Rahman, G. Hermite–Hadamard-Fejer type inequalities via fractional integrals of a function concerning another function. AIMS Math. 2021, 6, 4280–4295. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. Int. J. Math. Ana. 2010, 4, 185–191. [Google Scholar]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phy. 2009, 228, 3137–3153. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Zurich, Switzerland; Philadelphia, PA, USA, 1993. [Google Scholar]
- Dahmani, Z.; Tabharit, L. On weighted Grüss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2010, 2, 31–38. [Google Scholar] [CrossRef]
- Samraiz, M.; Mehmood, A.; Iqbal, S.; Naheed, S.; Chu, Y.-M. Generalized fractional operator with applications in mathematical physics. Chaos Solitons Fractals 2022, 165, 112830. [Google Scholar] [CrossRef]
- Budak, H.; Hezenci, F.; Kara, H. On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals. Math. Methods Appl. Sci. 2021, 44, 12522–12536. [Google Scholar] [CrossRef]
- Li, Y.; Samraiz, M.; Gul, A.; Vivas-Cortez, M.; Rahman, G. Hermite–Hadamard fractional integral inequalities via Abel–Gontscharoff Green’s function. Fractal Fract. 2022, 6, 126. [Google Scholar] [CrossRef]
- Yildiz, C.; Cotirla, L.I. Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function. Fractal Fract. 2023, 7, 161. [Google Scholar] [CrossRef]
- Wang, H.; Khan, J.; Khan, M.A.; Khalid, S.; Khan, R. The Hermite–Hadamard-Jensen-Mercer type inequalities for Rieman-Liouville fractional integral. J. Math. 2021, 2021, 5516987. [Google Scholar]
- Desta, H.D.; Pachpatte, D.B.; Mijena, J.B.; Abdi, T. Univariate and multivariate Ostrowski-type inequalities using Atangana-Baleanu Caputo fractional derivative. Axioms 2022, 11, 482. [Google Scholar] [CrossRef]
- Pachpatte, B.G. Mathematical Inequalities; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Iqbal, A.; Khan, M.A.; Suleman, M.; Chu, Y.-M. The right Riemann-Liouville fractional Hermite–Hadamard type inequalities derived from Green’s function. AIP Adv. 2020, 10, 045032. [Google Scholar] [CrossRef]
- Wu, S.; Iqbal, S.; Aamir, M.; Samraiz, M. On some Hermite–Hadamard inequalities involving k-fractional operator. J. Inequal. Appl. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Agarwal, R.P.; Wong, P.-J.-Y. Error Inequalities in Polynomial Interpolation and Their Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Mehmood, N.; Agarwal, R.P.; Butt, S.I.; Pecaric, J.E. New generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity. J. Inequal. Appl. 2017, 2017, 108. [Google Scholar] [CrossRef]
- Roman, H.E.; Porto, M. Fractional derivatives of random walks: Time series with long-time memory. Phys. Rev. E 2008, 78, 031127. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts. Cent. Eur. J. Phys. 2013, 11, 760–778. [Google Scholar] [CrossRef]
- Balci, M.A. Fractional virus epidemic model on financial networks. Open Math. 2016, 14, 1074–1086. [Google Scholar] [CrossRef]
- Moreles, M.A.; Lainez, R. Mathematical modelling of fractional order circuit elements and bioimpedance applications. Commun. Nonlinear Sci. Numer. Simul. 2017, 46, 81–88. [Google Scholar] [CrossRef]
- Reyes-Melo, E.; Martinez-Vega, J.; Guerrero-Salazar, C.; Ortiz-Mendez, U. Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J. Appl. Polym. Sci. 2005, 98, 923–935. [Google Scholar] [CrossRef]
- Carcione, J.M. Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. Geophysics 2009, 74, 1–11. [Google Scholar] [CrossRef]
- Khan, T.U.; Khan, M.A. Generalized conformable fractional operators. J. Comput. Appl. Math. 2019, 346, 378–389. [Google Scholar] [CrossRef]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Marichev, O.I.; Samko, S.G. Fractional Integrals and Derivatives: Theory and Applications; Gordonand Breach: Zurich, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies: New York, NY, USA; London, UK, 2006. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Saleem, M.S.; Sajid, S.; Zahoor, M.S.; Kashuri, A. Hermite-Jensen-Mercer-Type Inequalities via Caputo-Fabrizio Fractional Integral for h-Convex Function. Fractal Fract. 2021, 5, 269. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. 1905, 30, 175–193. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Tunç, T. Hermite–Hadamard type inequalities for interval-valued fractional integrals with respect to another function. Math. Slovaca 1994, 72, 1501–1512. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard-Fejer type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Hüseyin, Y. On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Ödemir, M.E.; Avci, M.; Set, E. On some inequalities of Hermite–Hadamard-type via m-convexity. Appl. Math. Lett. 2010, 23, 1065–1070. [Google Scholar] [CrossRef]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Application; Acadmic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Set, E.; Iscan, I.; Sarikaya, M.Z.; Ozdemir, M.E. On new inequalities of Hermite–Hadamard-Fejér type for convex functions via fractional integrals. Appl. Math. Comput. 2015, 259, 875–881. [Google Scholar] [CrossRef]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequal. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samraiz, M.; Naheed, S.; Gul, A.; Rahman, G.; Vivas-Cortez, M. Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations. Axioms 2023, 12, 914. https://doi.org/10.3390/axioms12100914
Samraiz M, Naheed S, Gul A, Rahman G, Vivas-Cortez M. Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations. Axioms. 2023; 12(10):914. https://doi.org/10.3390/axioms12100914
Chicago/Turabian StyleSamraiz, Muhammad, Saima Naheed, Ayesha Gul, Gauhar Rahman, and Miguel Vivas-Cortez. 2023. "Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations" Axioms 12, no. 10: 914. https://doi.org/10.3390/axioms12100914
APA StyleSamraiz, M., Naheed, S., Gul, A., Rahman, G., & Vivas-Cortez, M. (2023). Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations. Axioms, 12(10), 914. https://doi.org/10.3390/axioms12100914