applsci-logo

Journal Browser

Journal Browser

Seafloor Magmatic and Hydrothermal Activity

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Earth Sciences".

Deadline for manuscript submissions: closed (20 October 2024) | Viewed by 2241

Special Issue Editor


E-Mail Website
Guest Editor
Key Lab of Submarine Geoscience and Prospecting Techniques, Ocean University of China, Qingdao 266100, China
Interests: submarine petrology; geochemistry; magmatic hydrothermal activity; serpentinization process

Special Issue Information

Dear Colleagues,

Submarine magmatic processes and hydrothermal activities have been the focus of Marine Geology research for many years. With the continuous study of the seafloor environment, more and more deep-sea geological resources have been discovered. The magma and hydrothermal activities of the seafloor are related to the distribution of deep-sea geological resources.

This Special Issue focuses on new discoveries in the exploration of magmatic and hydrothermal activities on the seafloor, including but not limited to subduction zones, seamounts and mid-ocean ridges. These related studies may involve magmatic chamber processes, magmatic material sources, magmatic evolution, elemental material cycles, hydrothermal mineralization and their effects on the deep-sea environment.

Dr. Xiaohui Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine geology
  • deep-sea exploration
  • magmatic process
  • hydrothermal activity
  • seafloor resources
  • elemental and material cycle

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 9358 KiB  
Article
Constraints on the Geometry of Peripheral Faults above Mafic Sills in the Tarim Basin, China: Kinematic and Mechanical Approaches
by Zewei Yao
Appl. Sci. 2024, 14(19), 8621; https://doi.org/10.3390/app14198621 - 24 Sep 2024
Viewed by 764
Abstract
Host rock deformation associated with sill emplacement is used to constrain magma transfer and storage within the upper crust. In contrast to classic models suggesting that the host rock above mafic sills is dominated by elastic bending, recent studies show that bounding faults [...] Read more.
Host rock deformation associated with sill emplacement is used to constrain magma transfer and storage within the upper crust. In contrast to classic models suggesting that the host rock above mafic sills is dominated by elastic bending, recent studies show that bounding faults that limit the uplift area can occur at the peripheries of a mafic sill. However, the accurate dip of this type of fault, named peripheral faults here, is still not well constrained. Their origin is also controversial in some cases. In this study, kinematic modeling and limit analysis are performed to better constrain the structure and mechanical properties of the peripheral faults based on seismic interpretation of a mafic sill from the Tarim Basin, China. The trishear kinematic model successfully reproduces peripheral faulting and associated folding of the host rock by performing a displacement of 58 m on a vertical fault plane with a fault propagation (P) to fault slip (S) ratio of 2.5. The limit analysis also predicts vertical damage at the sill tip by sill inflation. These results suggest that the dip angle of the fault in the case study is 90°, which is more accurate than that from the seismic interpretation with an 88° inward dip. This value may vary in other cases as it depends on the sill geometry (such as diameter and inclination), thickness, depth, and mechanical properties of the host rock. The study supports that peripheral faulting and associated folding can occur at the tips of the mafic sill due to the vertical uplift of the host rock caused by sill inflation. It is also suggested that trishear kinematic modeling and limit analysis are effective methods for studying the geometry of peripheral faults. Full article
(This article belongs to the Special Issue Seafloor Magmatic and Hydrothermal Activity)
Show Figures

Figure 1

23 pages, 29604 KiB  
Article
Multi-Stage Metallogenesis and Fluid Evolution of the Hongtoushan Cu-Zn Volcanogenic Massive Sulfide Deposit, Liaoning Province, China: Constraints from Sulfur Isotopes, Trace Elements, and Fluid Inclusions
by Xinwei You, Ende Wang, Jianfei Fu and Yekai Men
Appl. Sci. 2024, 14(11), 4600; https://doi.org/10.3390/app14114600 - 27 May 2024
Viewed by 940
Abstract
The Hongtoushan Cu-Zn volcanogenic massive sulfide (VMS) deposit, located in the Hunbei granite–greenstone terrane of the North China Craton, has undergone a complex, multi-stage metallogenic evolution. The deposit comprises three main types of massive ores: Type-1 ores, characterized by a sulfide matrix enclosing [...] Read more.
The Hongtoushan Cu-Zn volcanogenic massive sulfide (VMS) deposit, located in the Hunbei granite–greenstone terrane of the North China Craton, has undergone a complex, multi-stage metallogenic evolution. The deposit comprises three main types of massive ores: Type-1 ores, characterized by a sulfide matrix enclosing granular quartz and dark mineral aggregates; Type-2 ores, distinguished by large pyrite and pyrrhotite porphyroblasts and a small amount of gangue minerals; and Type-3 ores, mainly distributed in the contact zone between the ore body and gneiss, featuring remobilized chalcopyrite and sphalerite filling the cracks of pyrite. The metallogenic process of the Hongtoushan deposit is divided into three main stages: (1) an early mineralization stage forming Type-1 massive ores; (2) a metamorphic recrystallization stage resulting in Type-2 massive ores with distinct textural features; and (3) a late-stage mineralization event producing Type-3 massive ores enriched in Cu, Zn, and other metals. This study integrates sulfur isotope, trace elements, and fluid inclusion data to constrain the sources of ore-forming materials, fluid evolution and metallogenic processes of the deposit. Sulfur isotope analyses of sulfide samples yield δ34S values ranging from −0.7 to 4.2 (mean: 1.8 ± 1.5, 1σ), suggesting a predominant magmatic sulfur source with possible contributions from Archean seawater. Trace element analyses of pyrite grains from different ore types reveal a depletion of rare earth elements, Cu, and Zn in Type-2 massive ores due to metamorphic recrystallization, and a subsequent re-enrichment of these elements in Type-3 massive ores. Fluid inclusion studies allowed for identifying three types of ore-forming fluids: Type-1 (avg. Th: 222.9; salinity: 6.74 wt.% NaCl eqv.), Type-2 (avg. Th: 185.72; salinity: 16.56 wt.% NaCl eqv.), and Type-3 (avg. Th: 184.81; salinity: 16.22 wt.% NaCl eqv.), representing a complex evolution involving cooling, water–rock interaction and fluid mixing. This multi-disciplinary study reveals the interplay of magmatic, hydrothermal and metamorphic processes in the formation of the Hongtoushan VMS deposit, providing new insights into the fluid evolution and metallogenic mechanisms of similar deposits in ancient granite–greenstone terranes. Full article
(This article belongs to the Special Issue Seafloor Magmatic and Hydrothermal Activity)
Show Figures

Figure 1

Back to TopTop