Special Issue "Effects of Biochar on Soil Fertility and Crop Production"

A special issue of Agriculture (ISSN 2077-0472).

Deadline for manuscript submissions: closed (31 July 2015).

Special Issue Editor

Prof. Bin Gao
grade E-Mail Website
Guest Editor
Department of Agricultural and Biological Engineering, University of Florida, 285 Frazier Rogers Hall, P.O. Box 110570, Gainesville, FL 32611, USA
Tel. (352) 392-1864; Fax: (352) 392-4092
Interests: environmental nanotechnology; biochar technology; contaminant hydrology
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Biochar, also known as “biomass-derived black carbon”, is a pyrogenic carbon produced by the combustion of biomass in an oxygen-limited environment (pyrolysis). Recent studies have demonstrated that biochar can be used for various environmental applications to produce multiple benefits. In particular, biochar can be used as a soil amendment to improve soil fertility and crop production. When biochar is applied to soils, it may also introduce other environmental benefits, such as water conservation and protection and carbon sequestration.

Bin Gao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Keywords

  • biochar
  • soil amendment
  • fertilizer
  • soil moisture
  • water quality
  • carbon sequestration

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

Open AccessArticle
Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils
Agriculture 2016, 6(1), 10; https://doi.org/10.3390/agriculture6010010 - 10 Mar 2016
Cited by 8
Abstract
A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a [...] Read more.
A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC), and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn) contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Open AccessArticle
Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis
Agriculture 2015, 5(4), 1076-1115; https://doi.org/10.3390/agriculture5041076 - 05 Nov 2015
Cited by 26
Abstract
The growing need for food, energy and materials demands a resource efficient approach as the world’s population keeps increasing. Biochar is a valuable product that can be produced in combination with bio-energy in a cascading approach to make best use of available resources. [...] Read more.
The growing need for food, energy and materials demands a resource efficient approach as the world’s population keeps increasing. Biochar is a valuable product that can be produced in combination with bio-energy in a cascading approach to make best use of available resources. In addition, there are resources that have not been used up to now, such as, e.g., many agro-residues that can become available. Most agro-residues are not suitable for high temperature energy conversion processes due to high alkali-content, which results in slagging and fouling in conventional energy generation systems. Using agro-residues in thermal processes, therefore, logically moves to lower temperatures in order to avoid operational problems. This provides an ideal situation for the combined energy and biochar production. In this work a slow pyrolysis process (an auger reactor) at 400 °C and 600 °C is used as well as two fluidized bed systems for low-temperature (600 °C–750 °C) gasification for the combined energy and biochar generation. Comparison of the two different processes focuses here on the biochar quality parameters (physical, chemical and surface properties), although energy generation and biochar quality are not independent parameters. A large number of feedstock were investigated on general char characteristics and in more detail the paper focuses on two main input streams (woody residues, greenhouse waste) in order to deduct relationships between char parameters for the same feedstock. It is clear that the process technology influences the main biochar properties such as elemental- and ash composition, specific surface area, pH, in addition to mass yield quality of the gas produced. Slow pyrolysis biochars have smaller specific surface areas (SA) and higher PAH than the gasification samples (although below international norms) but higher yields. Higher process temperatures and different gaseous conditions in gasification resulted in lower biochar yields but larger TSA, higher pH and ash contents and very low tar content (16-PAH). From the feedstock data looked at in more detail, a few trends could be deducted in the attempt to learn how to steer the biochar characteristics for specific uses. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Show Figures

Figure 1

Open AccessArticle
Effects of Biochar Blends on Microbial Community Composition in Two Coastal Plain Soils
Agriculture 2015, 5(4), 1060-1075; https://doi.org/10.3390/agriculture5041060 - 03 Nov 2015
Cited by 5
Abstract
The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure. These impacts are [...] Read more.
The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure. These impacts are modulated not only by the biochar composition, but also on the soil’s physicochemical characteristics. This indicates that soil characteristics must be considered prior to biochar amendment. A significant portion of the soils of the southeastern coastal plain are severely degraded and, therefore, candidates for biochar amendment to strengthen soil fertility. In this study we focused on two common soil series in the southeastern coastal plain, utilizing feedstocks endemic to the area. We chose feedstocks in four ratios (100% pine chip; 80:20 mixture of pine chip to poultry litter; 50:50 mixture of pine chip to poultry litter; 100% poultry litter) prior to pyrolysis and soil amendment as a biochar product. Soil was analyzed for bioavailable nutrients via Mehlich-1 extractions, as well as microbial community composition using phospholipid fatty acid analysis (PLFA). Our results demonstrated significant shifts in microbial community composition in response to biochar amendment, the effects of which were greatest with 100% poultry litter biochar. Strong relationships between PLFAs and several Mehlich-1 extractable nutrients (Al, Cu, Fe, and P) were observed. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Show Figures

Figure 1

Open AccessArticle
Removing Gaseous NH3 Using Biochar as an Adsorbent
Agriculture 2015, 5(4), 991-1002; https://doi.org/10.3390/agriculture5040991 - 30 Sep 2015
Cited by 12
Abstract
Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with [...] Read more.
Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with different thermal conditions and activation techniques were determined using laboratory adsorption column tests. Ammonia adsorption capacities of non-activated biochars ranged from 0.15 to 5.09 mg·N/g, which were comparable to that of other commercial activated carbon and natural zeolite. There were no significant differences in ammonia adsorption capacities of steam activated and non-activated biochars even if the surface areas of the steam activated biochars were about two orders of magnitude greater than that of non-activated biochars. In contrast, phosphoric acid activation greatly increased the biochar ammonia adsorption capacity. This suggests that the surface area of biochar did not readily control gaseous NH3 adsorption. Ammonia adsorption capacities were more or less linearly increased with acidic oxygen surface groups of non-activated and steam-activated biochars. Phosphoric acid bound to the acid activated biochars is suspected to contribute to the exceptionally high ammonia adsorption capacity. The sorption capacities of virgin and water-washed biochar samples were not different, suggesting the potential to regenerate spent biochar simply with water instead of energy- and capital-intensive steam. The results of this study suggest that non-activated biochars can successfully replace commercial activated carbon in removing gaseous ammonia and the removal efficiency will greatly increase if the biochars are activated with phosphoric acid. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Show Figures

Figure 1

Open AccessArticle
Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater
Agriculture 2015, 5(3), 806-825; https://doi.org/10.3390/agriculture5030806 - 16 Sep 2015
Cited by 8
Abstract
It is known that properties of activated biochars are tightly associated with those of the original feedstock as well as pyrolysis and activation conditions. This study examined two feedstock types, pine wood shavings and chicken litter, to produce biochars at two different pyrolysis [...] Read more.
It is known that properties of activated biochars are tightly associated with those of the original feedstock as well as pyrolysis and activation conditions. This study examined two feedstock types, pine wood shavings and chicken litter, to produce biochars at two different pyrolysis temperatures and subsequently activated by steam, acid or base. In order to measure activation efficiency, all materials were characterized for their properties and ability to remediate two well-known heavy metals of concern: copper and arsenic. Base activated biochars were superior in arsenic adsorption, to acid or steam activated samples, but increase in adsorption was not significant to warrant use. For wood biochars, significant increases of surface functionality as related to oxygen bearing groups and surface charge were observed upon acid activation which led to increased copper ion adsorption. However, oxygen bearing functionalities were not sufficient to explain why chicken litter biochars and steam activated biochars appeared to be significantly superior to wood shavings in positively charged metal ion adsorption. For chicken litter, functionality of respective biochars could be related to phosphate containing groups inherited from feedstock composition, favorably positioning this feedstock in metal ion remediation applications. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Show Figures

Figure 1

Open AccessArticle
Biochars Derived from Gasified Feedstocks Increase the Growth and Improve Nutrient Acquisition of Triticum aestivum (L.) Grown in Agricultural Alfisols
Agriculture 2015, 5(3), 668-681; https://doi.org/10.3390/agriculture5030668 - 19 Aug 2015
Cited by 4
Abstract
Biochars are produced by low-oxygen gasification or pyrolysis of organic waste products, and can be co-produced with energy, achieving waste diversion and delivering a soil amendment that can improve agricultural yields. Although many studies have reported the agronomic benefits of biochars produced from [...] Read more.
Biochars are produced by low-oxygen gasification or pyrolysis of organic waste products, and can be co-produced with energy, achieving waste diversion and delivering a soil amendment that can improve agricultural yields. Although many studies have reported the agronomic benefits of biochars produced from pyrolysis, few have interrogated the ability of gasified biochars to improve crop productivity. An earlier study described the ability of a biochar that was derived from gasified Kentucky bluegrass (KB) seed screenings to impact the chemistry of acidic agricultural soils. However, that study did not measure the effects of the biochar amendment on plant growth or on nutrient acquisition. To quantify these effects we conducted a greenhouse study that evaluated wheat grown in agricultural soils amended with either the KB-based biochar or a biochar derived from a blend of woody mixed-waste. Our studies indicated that biochar amended soils promoted the growth of wheat in these agricultural alfisols. Our elemental analysis indicated that an attenuation of metal toxicity was likely responsible for the increased plant growth. The results of our study are placed in the context of our previous studies that characterized KB-sourced biochar and its effects on soil chemistry. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Show Figures

Figure 1

Open AccessArticle
Pine Woodchip Biochar Impact on Soil Nutrient Concentrations and Corn Yield in a Silt Loam in the Mid-Southern U.S.
Agriculture 2015, 5(1), 30-47; https://doi.org/10.3390/agriculture5010030 - 04 Feb 2015
Cited by 5
Abstract
Biochar has altered plant yields and soil nutrient availability in tropical soils, but less research exists involving biochar additions to temperate cropping systems. Of the existing research, results vary based on soil texture, crop grown, and biochar properties. The objective of this study [...] Read more.
Biochar has altered plant yields and soil nutrient availability in tropical soils, but less research exists involving biochar additions to temperate cropping systems. Of the existing research, results vary based on soil texture, crop grown, and biochar properties. The objective of this study was to determine the effects of pine (Pinus spp.) woodchip biochar at 0, 5, and 10 Mg·ha−1 rates combined with urea nitrogen (N) on soil chemical properties and corn (Zea mays L.) yield under field conditions in the first growing season after biochar addition in a silt-loam alluvial soil. Biochar combined with fertilizer numerically increased corn yields, while biochar alone numerically decreased corn yields, compared to a non-amended control. Corn nitrogen uptake efficiency (NUE) was greater with 10 Mg·ha−1 biochar compared to no biochar. There were limited biochar effects on soil nutrients, but biochar decreased nitrate, total dissolved N, and Mehlich-3 extractable sulfur and manganese concentrations in the top 10 cm. Pine woodchip biochar combined with N fertilizer has the potential to improve corn production when grown in silt-loam soil in the mid-southern U.S. by improving NUE and increasing yield. Further research will be important to determine impacts as biochar ages in the soil. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Show Figures

Figure 1

Other

Jump to: Research

Open AccessTechnical Note
Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application of Urine-Enhanced Biochar to a Fertile Tropical Soil
Agriculture 2015, 5(3), 723-741; https://doi.org/10.3390/agriculture5030723 - 07 Sep 2015
Cited by 39
Abstract
A widely abundant and invasive forest shrub, Eupatorium adenophorum, was pyrolyzed in a cost-efficient flame curtain kiln to produce biochar. The resulting biochar fulfilled all the requirements for premium quality, according to the European Biochar Certificate. The biochar was either applied alone [...] Read more.
A widely abundant and invasive forest shrub, Eupatorium adenophorum, was pyrolyzed in a cost-efficient flame curtain kiln to produce biochar. The resulting biochar fulfilled all the requirements for premium quality, according to the European Biochar Certificate. The biochar was either applied alone or mixed with fresh cow urine (1:1 volume) to test its capacity to serve as slow release fertilizer in a pumpkin field trial in Nepal. Treatments included cow-manure compost combined with (i) urine-only; (ii) biochar-only or (iii) urine-loaded biochar. All materials were applied directly to the root zone at a biochar dry matter content of 750 kg·ha−1 before seeding. The urine-biochar treatment led to a pumpkin yield of 82.6 t·ha−1, an increase of more than 300% compared with the treatment where only urine was applied, and an 85% increase compared with the biochar-only treatment. This study showed for the first time that a low-dosage root zone application of urine-enhanced biochar led to substantial yield increases in a fertile silt loam soil. This was tentatively explained by the formation of organic coating of inner pore biochar surfaces by the urine impregnation, which improved the capacity of the biochar to capture and exchange plant nutrients. Full article
(This article belongs to the Special Issue Effects of Biochar on Soil Fertility and Crop Production)
Show Figures

Figure 1

Back to TopTop