Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application of Urine-Enhanced Biochar to a Fertile Tropical Soil
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Site
2.2. Experimental Setup
Analyzed Parameters | Field Site Location | Test Method/Instrument | |||||||
---|---|---|---|---|---|---|---|---|---|
Nirmala Timilsina | Bimala Lamsal | Uma Aryal | Sani Aryal | Sita Lamsal | Tank Timilsina | Ambika Aryal | Anisa Kattel | ||
pH | 6.71 | 4.55 | 4.9 | 6.42 | 4.48 | 5.64 | 5.94 | 5.99 | Measured in H2O suspension |
Soil Organic Matter (SOM)% | 5.37 | 2.04 | 1.93 | 5.54 | 2.37 | 3.06 | 2.74 | 2.62 | Weight loss on ignition at 360 °C |
Total Nitrogen (mg·kg−1) | 2093 | 1820 | 1512 | 2002 | 2044 | 2072 | 2184 | 1960 | Kjeldahl method |
Available Phosphorus (mg·kg−1) | 235.05 | 143.3 | 107.5 | 120.45 | 124.6 | 308.4 | 130.8 | 308.4 | Olsen P-Method |
Exchangeable Potassium (K), (mg·kg−1) | 135.7 | 68.98 | 77.29 | 502.8 | 69.83 | 257.3 | 160 | 98.98 | Ammonium acetate followed by atomic absorbtion spectroscopy |
CEC (meq 100 g−1) | 48.1 | 65.4 | 53.8 | 59 | 59.4 | 36.2 | 52.6 | 40 | Ammonium acetate extraction |
Exchangeable Calcium(Ca), (mg·kg−1) | 1154 | 171.7 | 305 | 800 | 190 | 1083 | 1133 | 950 | Ammonium acetate extraction |
Exchangeable Magnesium (Mg), (mg·kg−1) | 411 | 97.27 | 136.2 | 421 | 96.53 | 415.3 | 459.1 | 433.1 | Ammonium acetate extraction |
Exchangeable Sodium (Na), (mg·kg−1) | 32 | 47.66 | 19.16 | 75.87 | 27.73 | 15.26 | 44.81 | 9.42 | Ammonium acetate extraction |
Clay (%) | 7 | 18 | 14 | 8 | 14 | 22 | 24 | 13 | Hydrometer method |
Sand (%) | 27.27 | 4.82 | 5.59 | 15.96 | 16.22 | 13.31 | 13.29 | 35.73 | |
Silt (%) | 65.73 | 77.18 | 80.41 | 76.04 | 69.78 | 64.69 | 62.71 | 51.27 | |
Texture class | Silt Loam | Silt Loam | Silt Loam | Silt Loam | Silt Loam | Silt Loam | Silt Loam | Silt Loam |
2.3. Biochar Characterization
Parameter | Unit | in Fresh Matter | in Dry Matter |
---|---|---|---|
Density | kg·m−3 | 778 | 120 |
Specific surface (BET) | m2·g−1 | - | 215 |
Ash 550 °C | mass-% | 3.4 | 21.9 |
Hydrogen | mass-% | 0.21 | 1.33 |
Carbon | mass-% | 11.1 | 72 |
Nitrogen | mass-% | 0.08 | 0.54 |
Oxygen | mass-% | 0.6 | 4.0 |
Carbonate CO2 | mass-% | <0.4 | 2.24 |
Organic carbon | mass-% | 11.1 | 71.4 |
H/C org. (molar) | 0.23 | 0.22 | |
O/C (molar) | 0.04 | 0.042 | |
pH | 9.8 | - | |
Electric conductivity | μS·cm−1 | 9090 | - |
Salt content | g·kg−1 | 8.25 | 53.7 |
Phosphorous | mg·kg−1 | - | 3700 |
Magnesium | mg·kg−1 | - | 12,000 |
Calcium | mg·kg−1 | - | 17,000 |
Potassium | mg·kg−1 | - | 28,000 |
Sodium | mg·kg−1 | - | 520 |
Iron | mg·kg−1 | - | 6000 |
Silicium | mg·kg−1 | - | 34,000 |
Sulfur | mg·kg−1 | - | 860 |
Naphthalene | mg·kg−1 | - | 2.0 |
Phenanthrene | mg·kg−1 | - | 0.8 |
Anthracene | mg·kg−1 | - | 0.2 |
Fluoranthene | mg·kg−1 | - | 0.6 |
Pyrene | mg·kg−1 | - | 0.5 |
Benzo (a)pyrene | mg·kg−1 | - | <0.1 |
SUM polycyclic aromatic hydrocarbons (EPA 16) | mg·kg−1 | - | 4.9 |
2.4. Cow Urine and Compost Nutrient Analyses and NPK Application Rates
2.5. Statistical Analysis
3. Results and Discussion
Farmers’ Names | N | p | Urine-Only | Biochar-Only | Biochar-Urine |
---|---|---|---|---|---|
Nirmala Timilsina | 4 | 0.0093 | 11.0 ± 6.78 a | 18.75 ± 6.13 ab | 26.75 ± 2.63 b |
Bimala Lamsal | 5 | 0.0026 | 9.4 ± 3.72 a | 16.6 ± 8.08 a | 27.4 ± 6.43 b |
Uma Aryal | 5 | 0.0493 | 9.0 ± 3.94 a | 12.6 ± 8.23 ab | 24.25 ± 11.84 b |
Sani Aryal | 3 | 0.004 | 5.67 ± 0.58 a | 14.33 ± 4.73 a | 25.33 ± 5.69 b |
Sita Lamsal | 4 | ns | 6.5 ± 7.55 a | 25.0 ± 24.06 a | 36.0 ± 29.02 a |
Tank Timilsina | 4 | 0.0319 | 4.0 ± 3.74 a | 12.75 ± 8.14 ab | 19.0 ± 7.17 b |
Ambika Aryal | 5 | 0.0013 | 3.8 ± 3.63 a | 12.4 ± 8.56 a | 32.0 ± 13.11 b |
Anisa Kattel | 5 | 0.0069 | 12.6 ± 13.2 a | 24.6 ± 14.14 a | 55.8 ± 24.26 b |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Cornelissen, G.; Martinsen, V.; Shitumbanuma, V.; Alling, V.; Breedveld, G.; Rutherford, D.; Sparrevik, M.; Hale, S.; Obia, A.; Mulder, J. Biochar effect on maize yield and soil characteristics in five conservation farming sites in zambia. Agronomy 2013, 3, 256–274. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Spokas, K.A.; Verheijen, G.A. Biochara effects on grop yield. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2015; pp. 301–326. [Google Scholar]
- Schmidt, H.-P.; Shackley, S. Biochar Horizon 2025. In Biochar in European Soils and Agriculture: Science and Practice; Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., Eds.; Routledge: London, UK, 2016; accepted. [Google Scholar]
- Shackley, S.; Clare, A.; Joseph, S.; McCarl, B.A.; Schmidt, H.-P. Economic evaluation of biochar systems: Current evidence and challenges. In BIochar for Environmental Management—Science and Technology, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2015; pp. 813–852. [Google Scholar]
- Jin, H. Characterization Of Microbial Life Colonizing Biochar and Biochar-Amended Soils; UMI: Ann Arbor, MI, USA, 2010. [Google Scholar]
- Ding, Y.; Liu, Y.-X.; Wu, W.-X.; Shi, D.-Z.; Yang, M.; Zhong, Z.-K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 2010, 213, 47–55. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2011, 350, 57–69. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.-W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; del Carmen del Campillo, M.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Knight, J.; Woods, J. Biochar as a soil amendment positively interacts with nitrogen fertiliser to improve barley yields in the UK. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 372052. [Google Scholar] [CrossRef]
- Joseph, S.; Graber, E.R.; Chia, C.; Munroe, P.; Donne, S.; Thomas, T.; Nielsen, S.; Marjo, C.; Rutlidge, H.; Pan, G.; et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 2013, 4, 323–343. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Kammann, C.; Niggli, C.; Evangelou, M.W.H.; Mackie, K.A.; Abiven, S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosyst. Environ. 2014, 191, 117–123. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between compost and biochar for sustainable soil amelioration. In Management of Organic Waste; Kumar, S., Bharti, A., Eds.; In Tech: Rijeka, Yugoslavia, 2012. [Google Scholar]
- Prost, K.; Borchard, N.; Siemens, J.; Kautz, T.; Séquaris, J.M.; Möller, A.; Amelung, W. Biochar affected by composting with farmyard manure. J. Environ. Qual. 2013, 42, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; Das, K.C.; Melear, N.; Lakly, D. Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.T.; Bouvier, C.; Bettarel, Y.; Bouvier, T.; Henry-des-Tureaux, T.; Janeau, J.L.; Lamballe, P.; van Nguyen, B.; Jouquet, P. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Appl. Soil Ecol. 2014, 73, 78–86. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 2009, 75, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Smebye, A.; Alling, V.; Vogt, R.D.; Gadmar, T.C.; Mulder, J.; Cornelissen, G.; Hale, S.E. Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 2015, in press. [Google Scholar]
- Uchimiya, M.; Ohno, T.; He, Z. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. J. Anal. Appl. Pyrolysis 2013, 104, 84–94. [Google Scholar] [CrossRef]
- Cornelissen, G.; van Noort, P.C.M.; Govers, H.A.J. Mechanism of slow desorption of organic compounds from sediments: A study using model sorbents. Environ. Sci. Technol. 1998, 32, 3124–3131. [Google Scholar] [CrossRef]
- Ghosh, S.; Ow, L.F.; Wilson, B. Influence of biochar and compost on soil properties and tree growth in a tropical urban environment. Int. J. Environ. Sci. Technol. 2015, 12, 1303–1310. [Google Scholar] [CrossRef]
- Lashari, M.S.; Ye, Y.; Ji, H.; Li, L.; Kibue, G.W.; Lu, H.; Zheng, J.; Pan, G. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment. J. Sci. Food Agric. 2015, 95, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; Glaser, B.; Geraldes Teixeira, W.; Lehmann, J.; Blum, W.E.H.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- Schmidt, H.-P. Treating liquid manure with biochar. Ithaka J. 2012, 1, 273–276. [Google Scholar]
- Buckthought, L.E.; Clough, T.J.; Cameron, K.C.; Di, H.J. Fertiliser and seasonal urine effects on N2O emissions from the urine-fertiliser interface of a grazed pasture. N.Z. J. Agric. Res. 2015, 58, 37–41. [Google Scholar] [CrossRef]
- Schmidt, H.-P. 55 uses of biochar. Ithaka J. 2012, 29, 286–289. [Google Scholar]
- Hobbs, P.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: the heretics view. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Jeffery, S.; Bezemer, T.M.; Cornelissen, G.; Kuyper, T.W.; Lehmann, J.; Mommer, L.; Sohi, S.P.; van de Voorde, T.F.J.; Wardle, D.A.; van Groenigen, J.W. The way forward in biochar research: Targeting trade-offs between the potential wins. GCB Bioenergy 2013, 7, 1–13. [Google Scholar] [CrossRef]
- Blackwell, P.; Krull, E.; Butler, G.; Herbert, A.; Solaiman, Z. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: An agronomic and economic perspective. Aust. J. Soil Res. 2010, 48, 531–545. [Google Scholar] [CrossRef]
- Graves, D. A Comparison of Methods to Apply Biochar into Temperate Soils; Ladygina, N., Rineau, F., Eds.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Martinsen, V.; Mulder, J.; Shitumbanuma, V.; Sparrevik, M.; Børresen, T.; Cornelissen, G. Farmer-led maize biochar trials: Effect on crop yield and soil nutrients under conservation farming. J. Plant Nutr. Soil Sci. 2014, 177, 681–695. [Google Scholar] [CrossRef]
- Joseph, S.; Van Zwieten, L.; Chia, C.; Kimber, S.; Munroe, P.; Lin, Y.; Marjo, C.; Hook, J.; Thomas, T.; Nielsen, S.; Donne, S.; Taylor, P. Designing specific biochars to address soil constraints: A developing industry. In Biochar and Soil Biota; Ladygina, N., Rineau, F., Eds.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Schmidt, H.P.; Taylor, P. Kon-Tiki flame curtain pyrolysis for the democratization of biochar production. Biochar J. 2014, 1, 14–24. [Google Scholar]
- Kon-Tiki World Map. Available online: http://www.ithaka-institut.org/en/ct/113 (accessed on 20 July 2015).
- Williams, P.H.; Haynes, R.J. Comparison of initial wetting pattern, nutrient concentrations in soil solution and the fate of 15N-labelled urine in sheep and cattle urine patch areas of pasture soil. Plant Soil 1994, 162, 49–59. [Google Scholar] [CrossRef]
- Shrestha, K.; Wilson, E.; Gay, H. Ecological and environmental study of Eupatorium Adenophorum Sprengel (banmara) with reference to its gall formation in Gorkha-Langtang route, Nepal. J. Nat. Hist. Mus. 2008, 23, 108–124. [Google Scholar]
- European Biochar Foundation. EBC European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; Version 6.1; European Biochar Foundation: Arbaz, Switzerland, 2015. [Google Scholar]
- Hoogendoorn, C.; Betteridge, K.; Costall, D.; Ledgard, S. Nitrogen concentration in the urine of cattle, sheep and deer grazing a common ryegrass/cocksfoot/white clover pasture. N. Z. J. Agric. Res. 2010, 53, 235–243. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Saunders, W.H.M. Effects of cow urine and its major constituents on pasture properties. N. Z. J. Agric. Res. 1982, 25, 61–68. [Google Scholar] [CrossRef]
- Knowlton, K.F.; Herbein, J.H. Phosphorus partitioning during early lactation in dairy cows fed diets varying in phosphorus content. J. Dairy Sci. 2002, 85, 1227–1236. [Google Scholar] [CrossRef]
- Field, A.C.; Woolliams, J.A.; Dingwall, R.A.; Munro, C.S. Animal and dietary variation in the absorption and metabolism of phosphorus by sheep. J. Agric. Sci. 2009, 103, 283–291. [Google Scholar] [CrossRef]
- Eghball, B. Nitrogen mineralization from fi eld-applied beef cattle feedlot manure or compost. Soil Sci. Soc. Am. J. 2000, 64, 2024–2030. [Google Scholar] [CrossRef]
- Wen, G.; Bates, T.E.; Voroney, R.P.; Winter, J.P.; Schellenbert, M.P. Comparison of phosphorus availability with application of sewage sludge, sludge compost, and manure compost. Commun. Soil Sci. Plant Anal. 1997, 28, 1481–1497. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Yermiyahu, U.; Beraud, J.; Keinan, M.; Rosenbery, R.; Zohar, D.; Rosen, V.; Fine, P. Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications. J. Environ. Qual. 2004, 33, 1855–1865. [Google Scholar] [CrossRef] [PubMed]
- Gy, P. Sampling of discrete materials—A new introduction to the theory of sampling. Chemom. Intell. Lab. Syst. 2004, 74, 7–24. [Google Scholar] [CrossRef]
- Team, T.R.C. R: A Language and Environment for Statistical Computing; Version 3.2.1; R Foundation for Statistical Computing: Vienna, Austria, 2009. [Google Scholar]
- Bavec, F.; Grobelnik Mlakar, S.; Rozman, C.; Bavec, M. Oil Pumpkins: Niche for Organic Producers. In Issues in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2007. [Google Scholar]
- Penn State University, E. Pumkin production. Available online: http://extension.psu.edu/business/ag-alternatives/horticulture/melons-and-pumpkins/pumpkin-production (accessed on 20 July 2015).
- Haifa-Group How to Grow Pumpkins. Available online: http://bit.ly/1e8Ut4S (accessed on 25 July 2015).
- Reiners, S.; Riggs, D.I.M. Plant spacing and variety affect pumpkin yield and fruit size, but supplemental nitrogen does not. HortScience 1997, 32, 1037–1039. [Google Scholar]
- Bavec, F.; Bavec, M. Evaluation of target value of nitrogen fertilizing on the basis soil N min in pumpkins. In Proceedings of the Congress of the European Society for Agronomy, Nitra, Slovakia, 28 June–2 July 1998; European Society for Agronomy (ESA): Copenhagen, Denmark, 1998. [Google Scholar]
- Wachendorf, C.; Taube, F.; Wachendorf, M. Nitrogen leaching from 15N labelled cow urine and dung applied to grassland on a sandy soil. Nutr. Cycl. Agroecosyst. 2005, 73, 89–100. [Google Scholar] [CrossRef]
- Esteller, M.V.; Martínez-Valdés, H.; Garrido, S.; Uribe, Q. Nitrate and phosphate leaching in a Phaeozem soil treated with biosolids, composted biosolids and inorganic fertilizers. Waste Manag. 2009, 29, 1936–1944. [Google Scholar] [CrossRef] [PubMed]
- Broschat, T.K. Nitrate, phosphate, and potassium leaching from container-grown plants fertilized by several methods. HortScience 1995, 30, 74–77. [Google Scholar]
- Alfaro, M.A.; Jarvis, S.C.; Gregory, P.J. Factors affecting potassium leaching in different soils. Soil Use Manag. 2006, 20, 182–189. [Google Scholar] [CrossRef]
- Ventura, M.; Sorrenti, G.; Panzacchi, P.; George, E.; Tonon, G. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. J. Environ. Qual. 2013, 42, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Iqbal, H.; Garcia-Perez, M.; Flury, M. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Sci. Total Environ. 2015, 521–522, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Brewer, C.E.; Masiello, C.A.; Zygourakis, K. Nutrient transport in soils amended with biochar: A transient model with two stationary phases and intraparticle diffusion. Ind. Eng. Chem. Res. 2015, 54, 4123–4135. [Google Scholar] [CrossRef]
- Provin, T.L.; Wright, A.L.; Hons, F.M.; Zuberer, D.A.; White, R.H. Seasonal dynamics of soil micronutrients in compost-amended bermudagrass turf. Bioresour. Technol. 2008, 99, 2672–2679. [Google Scholar] [CrossRef] [PubMed]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef] [PubMed]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 2015, 237–238, 105–116. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2012, 362, 389–417. [Google Scholar] [CrossRef] [Green Version]
- Kluepfel, L.; Keiluweit, M.; Kleber, M.; Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2014, 48, 5601–5611. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Conte, P.; Hanke, U.M.; Marsala, V.; Cimo, G.; Alonzo, G.; Glaser, B. Mechanisms of water interaction with pore systems of hydrochar. J. Agric. Food Chem. 2014, 62, 4917–4923. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Marsala, V.; de Pasquale, C.; Bubici, S.; Valagussa, M.; Pozzi, A.; Alonzo, G. Nature of water-biochar interface interactions. GCB Bioenergy 2013, 5, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Thongboonkerd, V.; Mcleish, K.R.; Arthur, J.M.; Klein, J.B. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int. 2002, 62, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Nestle, N. Water dynamics in different biochar fractions. Magn. Reson. Chem. 2015, 53, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, F.; Pignatello, J.J. π (+)–π Interactions between (Hetero)aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environ. Sci. Technol. 2015, 49, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Chen, B.; Lin, Y.; Guan, Y. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ. Sci. Technol. 2014, 48, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Gilli, G.; Gilli, P. Towards an unified hydrogen-bond theory. J. Mol. Struct. 2000, 552, 1–15. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Ni, J.Z.; Xing, B.S. Adsorption of aromatic carboxylate ions to charcoal black carbon is accompanied by release of hydroxide ion. Abstr. Pap. Am. Chem. Soc. 2011, 242, 9240–9248. [Google Scholar]
- Conte, P. Effects of ions on water structure: A low-field 1H T1 NMR relaxometry approach. Magn. Reson. Chem. 2015, 53, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleineidam, S.; Schüth, C.; Grathwohl, P. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants. Environ. Sci. Technol. 2002, 36, 4689–4697. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C.I. Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application of Urine-Enhanced Biochar to a Fertile Tropical Soil. Agriculture 2015, 5, 723-741. https://doi.org/10.3390/agriculture5030723
Schmidt HP, Pandit BH, Martinsen V, Cornelissen G, Conte P, Kammann CI. Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application of Urine-Enhanced Biochar to a Fertile Tropical Soil. Agriculture. 2015; 5(3):723-741. https://doi.org/10.3390/agriculture5030723
Chicago/Turabian StyleSchmidt, Hans Peter, Bishnu Hari Pandit, Vegard Martinsen, Gerard Cornelissen, Pellegrino Conte, and Claudia I. Kammann. 2015. "Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application of Urine-Enhanced Biochar to a Fertile Tropical Soil" Agriculture 5, no. 3: 723-741. https://doi.org/10.3390/agriculture5030723