Precision Planting Technology and Equipment in Advanced Crop Cultivation

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Agricultural Technology".

Deadline for manuscript submissions: closed (10 September 2024) | Viewed by 17673

Special Issue Editors


E-Mail Website
Guest Editor
College of Engineering, Nanjing Agricultural University, Nanjing 211800, China
Interests: seeding robots; autonomous driving; variable seeding; variable fertilization; deep learning; sensor fusion; planting depth regulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
Interests: seeding equipment; coffee harvesting equipment; grading equipment; transplanter; modern agricultural equipment
College of Engineering, China Agricultural University, Beijing 100083, China
Interests: precision seeding equipment; harvest technology and equipment; modern agricultural equipment; computer measurement and control; grading equipment

Special Issue Information

Dear Colleagues,

The function of planting equipment is to sow the seeds (seedlings) of crops evenly into a certain depth of seed ditch with a certain sowing amount or spacing, cover them with an appropriate amount of fine and moist soil, and fertilize and suppress them appropriately. Pesticides and herbicides can be sprayed to provide good growth conditions for plant growing, thereby achieving high and stable yields and improving production efficiency.

In recent years, crop cultivation has continuously developed towards a direction that prioritizes yield and efficiency, which puts higher technical requirements on planting equipment. Therefore, advanced precision planting technology and equipment, as an essential means to promote large-scale agricultural production, has become a focus and hotspot in the current field of planting equipment research.

This Special Issue highlights influential research and commentary, focusing on the recent advances in precision planting technology and equipment. This issue will comprehensively cover interdisciplinary and comprehensive research on critical technologies and methods for advanced crop cultivation (precision seed-metering device, efficient and low loss transplanter, seed guide device, profiling mechanism, soil covering and compaction device, intelligent planting equipment, etc.) and research reports on other advanced technology systems promoting crop cultivation and production (variable rate seeding (fertilizing) technology, etc.). In addition, we encourage researchers to conduct practical research based on the actual planting conditions (soil, terrain, paddy fields, etc.) in their respective regions and to adopt innovative technologies and measures to solve the technical difficulties in current planting equipment operations. This Special Issue invites all types of articles mentioned above, using qualitative, quantitative, or mixed methods, as well as empirical preliminary research and comments.

Dr. Xiaojun Gao
Prof. Dr. Qinghui Lai
Dr. Tao Cui
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced planting equipment
  • key technologies and methods
  • precision seed-metering device
  • seed guide device
  • profiling mechanism
  • soil compaction device
  • stubble removal and anti-blocking device
  • intelligent planting equipment
  • efficient and low loss transplanter
  • variable rate seeding
  • seed cleaning and grading

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 8906 KiB  
Article
Design and Testing of Electric Drive System for Maize Precision Seeder
by Lin Ling, Yuejin Xiao, Xinguang Huang, Guangwei Wu, Liwei Li, Bingxin Yan and Duanyang Geng
Agriculture 2024, 14(10), 1778; https://doi.org/10.3390/agriculture14101778 - 9 Oct 2024
Cited by 2 | Viewed by 1182
Abstract
To improve the expandability, seeding accuracy, and operating speed range of the electric drive system (EDS) of precision seeders, this study constructed an EDS based on a controller area network (CAN) bus and designed a motor controller based on a field-orientated control (FOC) [...] Read more.
To improve the expandability, seeding accuracy, and operating speed range of the electric drive system (EDS) of precision seeders, this study constructed an EDS based on a controller area network (CAN) bus and designed a motor controller based on a field-orientated control (FOC) algorithm. Full-factorial bench and field tests based on seed spacing (0.1, 0.2, and 0.3 m) and operating speed (3, 6, 9, 12, and 15 km/h) were carried out to evaluate the performance of the EDS. The results of bench tests showed that seeding quality varied inversely with operating speed and positively with seed spacing. The average quality of feed index (QFI) at 0.1, 0.2, and 0.3 m seed spacing in bench tests was 88.38%, 96.67%, and 97.36%, with the average coefficient of variation (CV) being 20.13%, 16.27%, and 13.20%. Analysis of variance confirmed that both operating speed and seed spacing had a significant effect on QFI and CV (p < 0.001). The analysis of motor rotational speed accuracy showed that the relative error of motor rotational speed above 410 rpm did not exceed 2.24%, and the relative error had less influence on the seeding quality. The average QFI was 85.93%, 95.91%, and 96.24%, with the average CV being 21.12%, 15.50%, and 16.49% at 0.1, 0.2, and 0.3 m seed spacing in field tests. The methods and results of this study can provide a reference for the design and optimization of the EDS in a maize precision seeder and provide an effective solution for the improvement of maize yields. Full article
Show Figures

Figure 1

21 pages, 12051 KiB  
Article
Design and Experiment of Compound Transplanter for Sweet Potato Seedling Belt
by Wei Yan, Wenyi Zhang, Minjuan Hu, Yao Ji, Kun Li, Zhaoyang Ren and Chongyou Wu
Agriculture 2024, 14(10), 1738; https://doi.org/10.3390/agriculture14101738 - 2 Oct 2024
Viewed by 1084
Abstract
To address the issues of high labor intensity, excessive manpower requirements, low planting spacing qualification rates, low planting depth qualification rates, and low operational efficiency associated with sweet potato transplanting, a sweet potato seedling belt transplanter has been designed. This machine can perform [...] Read more.
To address the issues of high labor intensity, excessive manpower requirements, low planting spacing qualification rates, low planting depth qualification rates, and low operational efficiency associated with sweet potato transplanting, a sweet potato seedling belt transplanter has been designed. This machine can perform multiple processes: precision tillage and ridge shaping, orderly seedling feeding from rolls, the efficient separation of seedlings from the belt, flexible gripping and shaping, precise soil covering and the mechanism of exposing seedling tips. A three-factor, three-level orthogonal test was carried out using the forward speed of the machine, the pitch of the screw belt and the rotational speed of the screw as the influencing factors of the performance test, and the qualified rate of planting spacing and the qualified rate of planting depth as the evaluation indexes. The test results indicated that the significance order of the factors affecting the qualification rate for planting spacing with the optimal combination of factors was as follows: a forward speed of 0.3 m·s−1, a ribbon spacing of 60 mm, and a screw speed of 160 rpm. Field trials confirmed that under optimal conditions, the average qualification rate for planting spacing was 90.37%, meeting relevant technical standards and agronomic requirements. Full article
Show Figures

Figure 1

24 pages, 5903 KiB  
Article
Design and Testing of Soybean Double-Row Seed-Metering Device with Double-Beveled Seed Guide Groove
by Huajiang Zhu, Sihao Zhang, Wenjun Wang, Hongqian Lv, Yulong Chen, Long Zhou, Mingwei Li and Jinhui Zhao
Agriculture 2024, 14(9), 1595; https://doi.org/10.3390/agriculture14091595 - 13 Sep 2024
Cited by 1 | Viewed by 1075
Abstract
During the operation of a shaped hole seed-metering device, poor seed-filling quality and inconsistent seed-casting points lead to poor seed spacing uniformity, especially in a one-chamber double-row seed-metering device. To solve this problem, a soybean double-row seed-metering device with double-beveled seed guide groove [...] Read more.
During the operation of a shaped hole seed-metering device, poor seed-filling quality and inconsistent seed-casting points lead to poor seed spacing uniformity, especially in a one-chamber double-row seed-metering device. To solve this problem, a soybean double-row seed-metering device with double-beveled seed guide groove was designed to ensure a high single-seed rate and seed-casting point consistency. Through the theoretical analysis of the working process of the seed-metering device, dynamic and kinematic models of the seeds were established, and the main structural parameters of the seed discharge ring, triage convex ridge, shaped hole, and seed guide groove were determined. The main factors affecting the seeding performance were obtained as the following: the inclination angle of the triage convex ridge, the radius of the shaped hole, and the depth of the seed guide groove. A single-factor test was carried out by discrete element simulation to obtain the inclination angle of the triage convex ridge α3 = 29°, the radius of the shaped hole r1 = 4.16–4.5 mm, and the depth of the seed guide groove l1 = 0.49–1.89 mm. A two-factor, five-level, second-order, orthogonal rotation combination test was conducted to further optimize the structural parameters of the seed-metering device. The two test factors were the radius of the shaped hole and the depth of the seed guide groove, and the evaluation indices were the qualified rate, replay rate, and missed seeding rate. The results showed that the optimal combinations of the structural parameters were the radius of the shaped hole r1 = 4.33 mm and the depth of the seed guide groove l1 = 1.20 mm. Subsequent bench testing demonstrated that the seed discharge’s qualified rate was above 94% at operating speeds of 6–10 km/h, and the seeding performance was stable. The final results of the soil trench test showed that the seed-metering device exhibited a qualified rate of 93.31%, replay rate of 2.04%, and missed seeding rate of 4.65% at an operating speed of 8 km/h. This research outcome may serve as a valuable reference and source of inspiration for the innovative design of precision seed-metering devices. Full article
Show Figures

Graphical abstract

21 pages, 5449 KiB  
Article
Simulation and Optimization of a Rotary Cotton Precision Dibbler Using DEM and MBD Coupling
by Long Wang, Xuyang Ran, Lu Shi, Jianfei Xing, Xufeng Wang, Shulin Hou and Hong Li
Agriculture 2024, 14(8), 1411; https://doi.org/10.3390/agriculture14081411 - 20 Aug 2024
Viewed by 971
Abstract
Investigating the seeding mechanism of precision seeders is of great significance for improving the quality of cotton sowing operations. This paper designs a rotary type-hole cotton precision mulching dibbler. The main factors influencing the entry of cotton seeds into the seed wheel holes [...] Read more.
Investigating the seeding mechanism of precision seeders is of great significance for improving the quality of cotton sowing operations. This paper designs a rotary type-hole cotton precision mulching dibbler. The main factors influencing the entry of cotton seeds into the seed wheel holes during the seeding process are then theoretically analyzed. Following this, an accurate discrete element model of coated cotton seeds is established and combined with a discrete element method (DEM) and multi-body dynamics (MBD)-coupled simulation model of the seed drill for seed picking and planting. Simulation experiments on the seeding performance of the precision dibbler were performed to study the influence of the seed wheel structure and motion parameters on the picking and planting performance under different speeds. The optimal parameter combination for the seed wheel is obtained through optimization experiments, and a precision dibbler is manufactured for bench testing. The bench test results are consistent with the simulation test results. At the precision dibbler rotation speed of 16 r/min, the qualified index reaches a maximum value of 93.28%, the skip sowing index increases with the precision dibbler rotation speed, and the re-sowing index decreases as the speed increases. These optimization results significantly improved seeding precision and efficiency and are of great significance for the reliability and effectiveness of cotton sowing operations. Full article
Show Figures

Figure 1

11 pages, 1837 KiB  
Article
Strip Tillage Improves Productivity of Direct-Seeded Oilseed Rape (Brassica napus) in Rice–Oilseed Rape Rotation Systems
by Chaosu Li, Ming Li, Tao Xiong, Hongkun Yang, Xiaoqin Peng, Yong Wang, Haiyan Qin, Haojie Li, Yonglu Tang and Gaoqiong Fan
Agriculture 2024, 14(8), 1356; https://doi.org/10.3390/agriculture14081356 - 14 Aug 2024
Cited by 1 | Viewed by 1175
Abstract
Oilseed rape (Brassica napus) is a crucial global oil crop. It is generally cultivated in rotation with rice in southern China’s Yangtze River Basin, where the wet soil and residue retention after rice harvest significantly hinder its seedling establishment. Hence, this [...] Read more.
Oilseed rape (Brassica napus) is a crucial global oil crop. It is generally cultivated in rotation with rice in southern China’s Yangtze River Basin, where the wet soil and residue retention after rice harvest significantly hinder its seedling establishment. Hence, this study developed a strip-tillage seeder for oilseed rape seeding following rice harvest. Additionally, seedling establishment, soil infiltration and evaporation post-seeding, soil moisture change, oilseed yield, and weed occurrence under strip tillage (ST) were compared with conventional shallow rotary-tillage (SR) and deep rotary-tillage (DR) seeding practices. Compared to SR and DR, the results demonstrated that ST had a higher seeding efficiency and 53.8% and 80.2% lower energy consumption, respectively. ST also enhanced seedling growth and oilseed yield formation more effectively than the competitor tillage treatments, with an oilseed yield increase exceeding 6%. Additionally, ST improved water infiltration and reduced soil water evaporation, resulting in higher topsoil (0–20 cm) moisture during the critical growth stages. Furthermore, ST reduced soil disturbance, significantly decreasing the density of the dominant weed, Polypogon fugax. Overall, ST seeding technology has the potential to improve the productivity of oilseed rape in rice–oilseed rape rotation systems, and its yield superiority is mainly due to seedling establishment improvement and soil moisture adjustment. Full article
Show Figures

Figure 1

22 pages, 34176 KiB  
Article
Improving Sowing Uniformity of a Maize High-Speed Precision Seeder by Incorporating Energy Dissipator
by Rui Liu, Guangwei Wu, Jianjun Dong, Bingxin Yan and Zhijun Meng
Agriculture 2024, 14(8), 1237; https://doi.org/10.3390/agriculture14081237 - 26 Jul 2024
Viewed by 1167
Abstract
To enhance the sowing uniformity of the vacuum seeder in the high-speed working state, a flexible energy-dissipation receiving device was designed. We analyzed the angle and velocity of seed ejection from the seed-metering device. Additionally, we explored the rheological properties of four different [...] Read more.
To enhance the sowing uniformity of the vacuum seeder in the high-speed working state, a flexible energy-dissipation receiving device was designed. We analyzed the angle and velocity of seed ejection from the seed-metering device. Additionally, we explored the rheological properties of four different sodium alginate (SA) solutions. Combined with high-speed camera technology, the movement characteristics of four kinds of energy dissipators were revealed, and it was determined that the fabrication material of the energy dissipator is colloid with an SA percentage of 10%. The influence of the thickness of the energy dissipator body, impact velocity, and impact angle on the pre- and post-impact velocity difference and end-of-motion transverse displacement value was investigated. The quadratic regression equation between experimental factors and experimental indexes was established, and it was determined that the thickness of the energy dissipator was 7 mm. Field experiment results showed that the working speed was 12~16 km·h−1, the leakage rate was less than 6.83%, the multiple rates were less than 0.97%, the qualified rate was stable at more than 92.4%, and the qualified grain distance variation rate was stable at less than 16.57%. The designed energy-dissipation device is beneficial to improve the overall working performance of high-speed precision seeders. In the future, if the reliability and long-term performance of the energy-dissipation device are further improved, it will be able to meet the requirements for precision seeding under high-speed conditions. Full article
Show Figures

Figure 1

17 pages, 5133 KiB  
Article
Design and Experiment of the Profiling Header of River Dike Mower
by Mingsheng Li, Yulin Yan, Lin Tian, Xingzheng Chen and Fanyi Liu
Agriculture 2024, 14(7), 1188; https://doi.org/10.3390/agriculture14071188 - 19 Jul 2024
Viewed by 1167
Abstract
Drawing upon advancements in profiling technology, this paper presents an innovative lateral profiling mechanism for the header to improve mowing efficiency and the ability to adapt to terrain for river dike mowers. It delves into the imitation principle and forced situations. Furthermore, a [...] Read more.
Drawing upon advancements in profiling technology, this paper presents an innovative lateral profiling mechanism for the header to improve mowing efficiency and the ability to adapt to terrain for river dike mowers. It delves into the imitation principle and forced situations. Furthermore, a novel lawn protection boot design has been introduced, capable of adjusting mowing heights with swift transitions. The structural integrity of this boot has been optimized through rigorous finite element analysis. Meanwhile, the rolling shaft and cutter have been carefully selected and designed, with a mechanical model of the cutter established to examine its motion and force characteristics. In addition, hydraulic circuits tailored to fulfill the required functions of the header have been devised, and key hydraulic components have been appropriately selected. Key components are subjected to finite element analysis by using ANSYS to verify and optimize their structural strength. Prototype testing and field trials are subsequently conducted, revealing that the mower can achieve a mowing speed of 0.85 m/s on flat ground and a 25-degree slope, thereby fulfilling the design requirements for mowing speed. The imitation mechanism adapts to different embankment terrains. Notably, the lawn protection boots offer adjustable mowing heights of 10.4 cm, 12 cm, and 14 cm, respectively, with a height adjustment range of approximately 2 cm for each position, meeting the requirement for adjusting mowing heights. In addition, the transition time between different positions of the lawn protection boots is less than 5 min, achieving rapid switching and operational efficiency. Furthermore, a mowing uniformity test is conducted by using a header equipped with profiling functionality. The results reveal that the mowing effect of the profiling header meets design requirements, demonstrating its effectiveness and reliability in agricultural applications. Full article
Show Figures

Figure 1

16 pages, 2443 KiB  
Article
Analysis of Vibration Characteristics of Tractor–Rotary Cultivator Combination Based on Time Domain and Frequency Domain
by Yuanyuan Gao, Yifei Yang, Shuai Fu, Kangyao Feng, Xing Han, Yongyue Hu, Qingzhen Zhu and Xinhua Wei
Agriculture 2024, 14(7), 1139; https://doi.org/10.3390/agriculture14071139 - 13 Jul 2024
Cited by 6 | Viewed by 2356
Abstract
A good planting bed is a prerequisite for improving planting quality, while complex ground excitation often leads to machine bouncing and operation vibration, which then affects the operation effect. In order to improve the quality of rotary tillage operations, it is necessary to [...] Read more.
A good planting bed is a prerequisite for improving planting quality, while complex ground excitation often leads to machine bouncing and operation vibration, which then affects the operation effect. In order to improve the quality of rotary tillage operations, it is necessary to study the effects of various vibration excitations on the unit during tractor rotary tillage operations and analyze the vibration interaction relationship among the tractor, the three-point suspension mechanism, and the rotary tiller. For this purpose, multiple three-way acceleration sensors were installed at different positions on the rotary tiller unit of a Lexing LS1004 tractor(Lexing Agricultural Equipment Co. Ltd., Qingdao, China) to collect vibration data at different operating speeds and conduct vibration characteristic analysis between different components. The test results showed that when the unit moved forward at 2.1 km/h, 3.6 km/h, and 4.5 km/h, respectively, the vibration acceleration of the tractor, the three-point suspension mechanism, and the rotary tiller increased with the increase in speed, and there was indeed interaction between them. The vertical acceleration change during the test in the three-point suspension mechanism was the most significant (5.914 m/s2) and was related to the increase in the speed of the vehicle and the vibration transfer of the rotary tiller. Meanwhile, the vertical vibration acceleration of the tractor’s symmetrical structure was not similar, suggesting the existence of structural assembly problems. From the perspective of frequency domain analysis, the resonant frequency at the cab of the tractor was reduced in a vertical vibration environment, with relatively low frequencies (0~80 Hz) and small magnitudes, which might be beneficial to the driver’s health. The rotary tillage group resonated around 350 Hz, and this characteristic can be used to appropriately increase the vibration of the rotary tiller to reduce resistance. The tractor cab resonated around 280 Hz, which must be avoided during field operations to ensure driver health and reduce machine wear. The research results can provide a reference for reducing vibration and resistance during tractor rotary tillage operations, as well as optimizing and improving the structure of rotary tillers and tractors. Full article
Show Figures

Figure 1

15 pages, 3569 KiB  
Article
Experimental and Numerical Analysis of Straw Motion under the Action of an Anti-Blocking Mechanism for a No-Till Maize Planter
by Qingyi Zhang, Huimin Fang, Gaowei Xu, Mengmeng Niu and Jinyu Li
Agriculture 2024, 14(7), 1001; https://doi.org/10.3390/agriculture14071001 - 26 Jun 2024
Cited by 3 | Viewed by 1238
Abstract
To address the low clearance rate issue of the anti-blocking mechanism for maize no-till planters in the Huang-Huai-Hai Plain of China, experiments and simulations were conducted to analyze the individual and collective movements of straw under the action of the round roller-claw anti-blocking [...] Read more.
To address the low clearance rate issue of the anti-blocking mechanism for maize no-till planters in the Huang-Huai-Hai Plain of China, experiments and simulations were conducted to analyze the individual and collective movements of straw under the action of the round roller-claw anti-blocking mechanism. A tracer-based measurement method for straw displacement was applied firstly. Experimental results showed that the straw forward displacement could be characterized by the average horizontal displacements of longitudinal and lateral tracers, while the straw side displacement could be characterized by the lateral displacement of the longitudinal tracer. The straw forward displacement was 58.95% greater than the side displacement. Forward, side, and total displacements of straw increased as the mechanism’s forward speed increased from 3 km/h to 7 km/h, with corresponding rates of increase at 233.98%, 43.20%, and 162.47%, respectively. Furthermore, a model of straw–soil–mechanism interaction was constructed in EDEM 2022 software. The relative error between experimental and simulated straw clearance rates was 11.20%, confirming the applicability of the simulation model for studying straw–soil–mechanism interaction. Based on the simulation model, three straw tracers of different lengths were selected to study the motion behavior of straw. It was inferred that despite differences in straw length, the movement behaviors of the three straw tracers under the influence of the anti-blocking mechanism were similar. Additionally, longer straws exhibited greater displacements in all directions. This paper serves as a reference for studying straw motion behavior influenced by anti-blocking mechanisms. Full article
Show Figures

Figure 1

14 pages, 4667 KiB  
Article
Design and Experimentation of Rice Seedling Throwing Apparatus Mounted on Unmanned Aerial Vehicle
by Peichao Yuan, Youfu Yang, Youhao Wei, Wenyi Zhang and Yao Ji
Agriculture 2024, 14(6), 847; https://doi.org/10.3390/agriculture14060847 - 28 May 2024
Viewed by 1461
Abstract
In order to further exploit the production advantages of rice throwing, this paper proposes a systematically designed throwing device suitable for integration with unmanned aerial vehicles (UAVs). The device primarily comprises a seedling carrying and connection system, a seedling pushing mechanism, and a [...] Read more.
In order to further exploit the production advantages of rice throwing, this paper proposes a systematically designed throwing device suitable for integration with unmanned aerial vehicles (UAVs). The device primarily comprises a seedling carrying and connection system, a seedling pushing mechanism, and a seedling guiding device. The operational principles and workflow of the device are initially elucidated. Subsequently, an analysis of factors influencing rice throwing effectiveness is conducted, with throwing height, working speed, and the bottom diameter of the seedling guide tube identified as key factors. Seedling spacing uniformity and seedling uprightness are designated as performance indicators. A three-factor, three-level response surface experiment is conducted, yielding regression models for the experimental indicators. Through an analysis of the response surface, the optimal parameter combination is determined to be a throwing height of 142.79 cm, a working speed of 55.38 r/min, and a bottom diameter of the seedling guide tube of 43.51 mm. At these parameters, the model predicts a seedling spacing uniformity of 88.43% and a seedling uprightness of 88.12%. Field experiments validate the accuracy of the optimized model results. Experimental data indicate that under the optimal operational parameters calculated by the regression model, the seedling spacing uniformity is 86.7%, and the seedling uprightness is 84.2%. The experimental results meet the design requirements, providing valuable insights for UAV rice-throwing operations. Full article
Show Figures

Figure 1

12 pages, 5373 KiB  
Article
Research on a Multi-Lens Multispectral Camera for Identifying Haploid Maize Seeds
by Xiantao He, Jinting Zhu, Pinxuan Li, Dongxing Zhang, Li Yang, Tao Cui, Kailiang Zhang and Xiaolong Lin
Agriculture 2024, 14(6), 800; https://doi.org/10.3390/agriculture14060800 - 22 May 2024
Cited by 3 | Viewed by 1063
Abstract
Haploid breeding can shorten the breeding period of new maize varieties and is an important means to increase maize yield. In the breeding program, a large number of haploid seeds need to be screened, and this step is mainly achieved manually, which hinders [...] Read more.
Haploid breeding can shorten the breeding period of new maize varieties and is an important means to increase maize yield. In the breeding program, a large number of haploid seeds need to be screened, and this step is mainly achieved manually, which hinders the industrialization of haploid maize breeding. This article aims to develop a multispectral camera to identify the haploid seeds automatically. The camera was manufactured by replacing narrow-band filters of the ordinary CCD camera, and the RGB, 405 nm, 980 nm and 1050 nm images of haploid or diploid seeds were simultaneously captured (the characteristic wavelengths were determined according to color and high-oil markers of maize). The performance was tested using four maize varieties with the two genetic markers. The results show that the developed multispectral camera significantly improved the recognition accuracy of haploid maize seeds to 92.33%, 97.33%, 97% and 93.33% for the TYD1903, TYD1904, TYD1907 and TYD1908 varieties, respectively. The cameras in the near-infrared region (wavelengths of 980 nm and 1050 nm) achieved better performance for the varieties of high-oil marker, with an increase of 0.84% and 1.5%, respectively. These results demonstrate the strong potential of the multispectral imaging technology in the haploid seed identification of maize. Full article
Show Figures

Figure 1

22 pages, 9924 KiB  
Article
Simulation and Optimization of a Pendulum-Lever-Type Hole-Seeding Device
by Hengshan Zhou, Fei Dai, Ruijie Shi, Cai Zhao, Huan Deng, Haifu Pan and Qinxue Zhao
Agriculture 2024, 14(5), 750; https://doi.org/10.3390/agriculture14050750 - 11 May 2024
Cited by 1 | Viewed by 1523
Abstract
The process of hole seeding on the mulch during full-film double-row furrow corn planting faces issues such as poor seed discharge and seed blockage. To address these challenges, a pendulum-lever-type hole-forming mechanism is designed, along with an adjustment device. By analyzing the working [...] Read more.
The process of hole seeding on the mulch during full-film double-row furrow corn planting faces issues such as poor seed discharge and seed blockage. To address these challenges, a pendulum-lever-type hole-forming mechanism is designed, along with an adjustment device. By analyzing the working principles of the pendulum-lever-type hole seeder and the adjustment device, the structural parameters of the device are determined. Through theoretical analysis and simulation experiments, three-dimensional models of seeds and hole seeders are constructed. Based on MBD-DEM cosimulation, the trajectory of seed movement and the seeding process of the hole seeder are analyzed to elucidate the effects of the hole-former opening and the number of pendulum bearings on seeding quality. To improve the operational performance of the hole seeder, experiments are conducted using the hole seeder’s rotating disc speed, lever angle of the hole-former, and the number of pendulum bearings as experimental factors, with the qualification index, miss-seeding index, and reseeding index as experimental indicators. A three-factor, three-level Box–Behnken central composite experiment is performed to obtain mathematical models of the relationships between the experimental factors and indicators. Using Design-Expert 12 software, the regression models are optimized for multiple objectives to obtain the optimal parameter combination: a seeder disc speed of 49 r/min (corresponding to a forward speed of 5.76 km/h), a lever angle of 131°, and four pendulum bearings. Under this optimal parameter combination, the qualification index is 91.70%, the miss-seeding index is 4.57%, and the reseeding index is 3.73%. Experimental validation of the seeding performance of the hole seeder under the optimal parameter combination is conducted. Bench tests show that the qualification index, miss-seeding index, and reseeding index are 90.53%, 5.60%, and 3.87%, respectively. Field tests demonstrate a qualification index of 89.13%, a miss-seeding index of 5.46%, and a reseeding index of 6.41%. The actual results are consistent with the optimized values, providing valuable insights for the design and performance optimization of hole seeders. Full article
Show Figures

Figure 1

Back to TopTop