Journal Description
Marine Drugs
Marine Drugs
is the leading, peer-reviewed, open access journal on the research, development, and production of biologically and therapeutically active compounds from the sea. Marine Drugs is published monthly online by MDPI. Australia New Zealand Marine Biotechnology Society (ANZMBS) is affiliated with Marine Drugs and its members receive a discount on article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, PubAg, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q1 (Pharmacology & Pharmacy) / CiteScore - Q1 (Pharmacology, Toxicology and Pharmaceutics (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.1 days after submission; acceptance to publication is undertaken in 1.9 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.4 (2022);
5-Year Impact Factor:
5.5 (2022)
Latest Articles
Induction of New Aromatic Polyketides from the Marine Actinobacterium Streptomyces griseorubiginosus through an OSMAC Approach
Mar. Drugs 2023, 21(10), 526; https://doi.org/10.3390/md21100526 - 03 Oct 2023
Abstract
►
Show Figures
Using the OSMAC (One Strain Many Compounds) approach, the actinobacterium Streptomyces griseorubiginosus, derived from an unidentified cnidarian collected from a reef near Pointe de Bellevue in Réunion Island (France), was subjected to cultivation under diverse conditions. This endeavour yielded the isolation of
[...] Read more.
Using the OSMAC (One Strain Many Compounds) approach, the actinobacterium Streptomyces griseorubiginosus, derived from an unidentified cnidarian collected from a reef near Pointe de Bellevue in Réunion Island (France), was subjected to cultivation under diverse conditions. This endeavour yielded the isolation of a repertoire of 23 secondary metabolites (1–23), wherein five compounds were unprecedented as natural products (19–23). Specifically, compounds 19 and 20 showcased novel anthrone backbones, while compound 23 displayed a distinctive tetralone structure. Additionally, compounds 21 and 22 presented an unusual naphtho [2,3-c]furan-4(9H)-one chromophore. Interestingly, the detection of all these novel compounds (19–23) was exclusively achieved when the bacterium was cultured in FA-1 liquid medium supplemented with the epigenetic modifier γ-butyrolactone. The elucidation of the structural features of the newfound compounds was accomplished through a combination of HRESIMS, 1D and 2D NMR spectroscopy, as well as QM-NMR (Quantum Mechanical—Nuclear Magnetic Resonance) methods and by comparison with existing literature. Moreover, the determination of the relative configuration of compound 23 was facilitated by employing the mix-J-DP4 computational approach.
Full article
Open AccessArticle
Preparation of Enzyme-Soluble Swim Bladder Collagen from Sea Eel (Muraenesox cinereus) and Evaluation Its Wound Healing Capacity
Mar. Drugs 2023, 21(10), 525; https://doi.org/10.3390/md21100525 - 03 Oct 2023
Abstract
In the present research, the enzyme-facilitated collagen from sea eel (Muraenesox cinereus) swim bladder was isolated, and the collagen characteristics were analyzed. Then, the collagen sponge was prepared and its potential mechanism in promoting skin wound healing in mice was further
[...] Read more.
In the present research, the enzyme-facilitated collagen from sea eel (Muraenesox cinereus) swim bladder was isolated, and the collagen characteristics were analyzed. Then, the collagen sponge was prepared and its potential mechanism in promoting skin wound healing in mice was further investigated. Collagen was obtained from the swim bladder of sea eels employing the pepsin extraction technique. Single-factor experiments served as the basis for the response surface method (RSM) to optimize pepsin concentration, solid-liquid ratio, and hydrolysis period. With a pepsin concentration of 2067 U/g, a solid-liquid ratio of 1:83 g/mL, and a hydrolysis period of 10 h, collagen extraction achieved a yield of 93.76%. The physicochemical analysis revealed that the extracted collagen belonged to type I collagen, and the collagen sponge displayed a fibrous structure under electron microscopy. Furthermore, in comparison to the control group, mice treated with collagen sponge dressing exhibited elevated activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px), and decreased levels of malondialdehyde (MDA), interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. The collagen sponge dressing effectively alleviated inflammation in the wound area, facilitating efficient repair and rapid healing of the skin tissue. During the initial phase of wound healing, the group treated with collagen sponge dressing exhibited an enhancement in the expressions of cluster of differentiation (CD)31, epidermal growth factor (EGF), transforming growth factor (TGF)-β1, and type I collagen, leading to an accelerated rate of wound healing. In addition, this collagen sponge dressing could also downregulate the expressions of CD31, EGF, and type I collagen to prevent scar formation in the later stage. Moreover, this collagen treatment minimized oxidative damage and inflammation during skin wound healing and facilitated blood vessel formation in the wound. Consequently, it exhibits significant potential as an ideal material for the development of a skin wound dressing.
Full article
(This article belongs to the Special Issue Collagen and Bioactives from Marine By-Products)
►▼
Show Figures

Figure 1
Open AccessReview
Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms
Mar. Drugs 2023, 21(10), 524; https://doi.org/10.3390/md21100524 - 30 Sep 2023
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available
[...] Read more.
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 3.0)
►▼
Show Figures

Figure 1
Open AccessReview
Genus Litophyton: A Hidden Treasure Trove of Structurally Unique and Diversely Bioactive Secondary Metabolites
Mar. Drugs 2023, 21(10), 523; https://doi.org/10.3390/md21100523 - 29 Sep 2023
Abstract
Marine soft corals are prolific sources of various natural products that have served as a wealthy reservoir of diverse chemical scaffolds with potential as new drug leads. The genus Litophyton contains almost 100 species but only a small proportion of them has been
[...] Read more.
Marine soft corals are prolific sources of various natural products that have served as a wealthy reservoir of diverse chemical scaffolds with potential as new drug leads. The genus Litophyton contains almost 100 species but only a small proportion of them has been chemically investigated, which calls for more attentions from global researchers. In the current work, 175 secondary metabolites have been discussed, drawing from published data spanning almost five decades, up to July 2023. The studied species of the genus Litophyton resided in various tropical and temperate regions and encompassed a broad range of biologically active natural products including terpenes, steroids, nitrogen-containing metabolites, lipids, and other metabolites. A wide spectrum of pharmacological effects of these compounds had been evaluated, such as cytotoxic, antiviral, antibacterial, antifungal, anti-malarial, antifeedant, anti-inflammatory, molluscicidal, PTP1B inhibitory, insect growth inhibitory, and neuroprotective activities. This review aims to offer an up-to-date survey of the literature and provide a comprehensive understanding of the chemical structures, taxonomical distributions, and biological activities of the reported metabolites from the title genus whenever available.
Full article
Open AccessArticle
Affinity Purification and Molecular Characterization of Angiotensin-Converting Enzyme (ACE)-Inhibitory Peptides from Takifugu flavidus
by
, , , , , , , , , , and
Mar. Drugs 2023, 21(10), 522; https://doi.org/10.3390/md21100522 - 29 Sep 2023
Abstract
An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥80% from bounded components (eluted by 1 M NaCl) were identified by
[...] Read more.
An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L−1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be −82.7382 kJ·mol−1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.
Full article
(This article belongs to the Special Issue Marine Bioactive Peptides: Structure, Function, and Therapeutic Potential IV)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Biochemical Insights into a Novel Family 2 Glycoside Hydrolase with Both β-1,3-Galactosidase and β-1,4-Galactosidase Activity from the Arctic
Mar. Drugs 2023, 21(10), 521; https://doi.org/10.3390/md21100521 - 29 Sep 2023
Abstract
A novel GH2 (glycoside hydrolase family 2) β-galactosidase from Marinomonas sp. BSi20584 was successfully expressed in E. coli with a stable soluble form. The recombinant enzyme (rMaBGA) was purified to electrophoretic homogeneity and characterized extensively. The specific activity of purified rMaBGA was determined
[...] Read more.
A novel GH2 (glycoside hydrolase family 2) β-galactosidase from Marinomonas sp. BSi20584 was successfully expressed in E. coli with a stable soluble form. The recombinant enzyme (rMaBGA) was purified to electrophoretic homogeneity and characterized extensively. The specific activity of purified rMaBGA was determined as 96.827 U mg−1 at 30 °C using ONPG (o-nitrophenyl-β-D-galactopyranoside) as a substrate. The optimum pH and temperature of rMaBGA was measured as 7.0 and 50 °C, respectively. The activity of rMaBGA was significantly enhanced by some divalent cations including Zn2+, Mg2+ and Ni2+, but inhibited by EDTA, suggesting that some divalent cations might play important roles in the catalytic process of rMaBGA. Although the enzyme was derived from a cold-adapted strain, it still showed considerable stability against various physical and chemical elements. Moreover, rMaBGA exhibited activity both toward Galβ-(1,3)-GlcNAc and Galβ-(1,4)-GlcNAc, which is a relatively rare occurrence in GH2 β-galactosidase. The results showed that two domains in the C-terminal region might be contributed to the β-1,3-galactosidase activity of rMaBGA. On account of its fine features, this enzyme is a promising candidate for the industrial application of β-galactosidase.
Full article
(This article belongs to the Special Issue Marine Glycomics 2nd Edition)
Open AccessArticle
Assessing the Toxicity of Lagocephalus sceleratus Pufferfish from the Southeastern Aegean Sea and the Relationship of Tetrodotoxin with Gonadal Hormones
by
, , , , and
Mar. Drugs 2023, 21(10), 520; https://doi.org/10.3390/md21100520 - 29 Sep 2023
Abstract
Given the dramatic increase in the L. sceleratus population in the southeastern Aegean Sea, there is growing interest in assessing the toxicity of this pufferfish and the factors controlling its tetrodotoxin (TTX) content. In the present study, liver, gonads, muscle and skin of
[...] Read more.
Given the dramatic increase in the L. sceleratus population in the southeastern Aegean Sea, there is growing interest in assessing the toxicity of this pufferfish and the factors controlling its tetrodotoxin (TTX) content. In the present study, liver, gonads, muscle and skin of 37 L. sceleratus specimens collected during May and June 2021 from the island of Rhodes, Greece, were subjected to multi-analyte profiling using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to quantitate TTX and evaluate whether this biotoxin interrelates with hormones. TTX and its analogues 4-epiTTX, 11-deoxyTTX, 11-norTTX-6-ol, 4,9-anhydroTTX and 5,11/6,11-dideoxyTTX were detected in all tissue types. Liver and gonads were the most toxic tissues, with the highest TTX concentrations being observed in the ovaries of female specimens. Only 22% of the analyzed muscle samples were non-toxic according to the Japanese toxicity threshold (2.2 μg TTX eq g−1), confirming the high poisoning risk from the inadvertent consumption of this species. Four steroid hormones (i.e., cortisol, testosterone, androstenedione and β-estradiol) and the gonadotropin-releasing hormone (GnRH) were detected in the gonads. Androstenedione dominated in female specimens, while GnRH was more abundant in males. A positive correlation of TTX and its analogues with β-estradiol was observed. However, a model incorporating sex rather than β-estradiol as the independent variable proven to be more efficient in predicting TTX concentration, implying that other sex-related characteristics are more important than specific hormone-regulated processes.
Full article
(This article belongs to the Special Issue Tetrodotoxins: Detection, Biosynthesis and Biological Effects)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of Heterotrophic Culture Conditions for the Microalgae Euglena gracilis to Produce Proteins
Mar. Drugs 2023, 21(10), 519; https://doi.org/10.3390/md21100519 - 29 Sep 2023
Abstract
Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content
[...] Read more.
Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.
Full article
(This article belongs to the Special Issue Biotechnology of Algae)
►▼
Show Figures

Figure 1
Open AccessArticle
Antidiabetic Effect of Collagen Peptides from Harpadon nehereus Bones in Streptozotocin-Induced Diabetes Mice by Regulating Oxidative Stress and Glucose Metabolism
Mar. Drugs 2023, 21(10), 518; https://doi.org/10.3390/md21100518 - 29 Sep 2023
Abstract
Oxidative stress and abnormal glucose metabolism are the important physiological mechanisms in the occurrence and development of diabetes. Antioxidant peptides have been reported to attenuate diabetes complications by regulating levels of oxidative stress, but few studies have focused on peptides from marine bone
[...] Read more.
Oxidative stress and abnormal glucose metabolism are the important physiological mechanisms in the occurrence and development of diabetes. Antioxidant peptides have been reported to attenuate diabetes complications by regulating levels of oxidative stress, but few studies have focused on peptides from marine bone collagen. In this study, we prepared the peptides with a molecular weight of less than 1 kD (HNCP) by enzymolysis and ultrafiltration derived from Harpadon nehereus bone collagen. Furthermore, the effects of HNCP on blood glucose, blood lipid, liver structure and function, oxidative stress, and glucose metabolism were studied using HE staining, kit detection, and Western blotting experiment in streptozocin-induced type 1 diabetes mice. After the 240 mg/kg HNCP treatment, the levels of blood glucose, triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in streptozotocin-induced diabetes mice decreased by 32.8%, 42.2%, and 43.2%, respectively, while the levels of serum insulin and hepatic glycogen increased by 142.0% and 96.4%, respectively. The antioxidant enzymes levels and liver function in the diabetic mice were markedly improved after HNCP intervention. In addition, the levels of nuclear factor E2-related factor 2 (Nrf2), glucokinase (GK), and phosphorylation of glycogen synthase kinase-3 (p-GSK3β) in the liver were markedly up-regulated after HNCP treatment, but the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase1 (PEPCK1) were down-regulated. In conclusion, HNCP could attenuate oxidative stress, reduce blood glucose, and improve glycolipid metabolism in streptozocin-induced type 1 diabetes mice.
Full article
(This article belongs to the Special Issue Marine Bioactive Peptides—Structure, Function, and Application 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
A SIRT6 Inhibitor, Marine-Derived Pyrrole-Pyridinimidazole Derivative 8a, Suppresses Angiogenesis
Mar. Drugs 2023, 21(10), 517; https://doi.org/10.3390/md21100517 - 28 Sep 2023
Abstract
Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6),
[...] Read more.
Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6), a member of nicotinamide adenine (NAD+)-dependent histone deacetylases, regulates various biological processes, including metabolism, oxidative stress, angiogenesis, and DNA damage and repair. Some SIRT6 inhibitors have been identified, but the effects of SIRT6 inhibitors on anti-angiogenesis have not been reported. We have identified a pyrrole-pyridinimidazole derivative 8a as a highly effective inhibitor of SIRT6 and clarified its anti-pancreatic-cancer roles. This study investigated the antiangiogenic roles of 8a. We found that 8a was able to inhibit the migration and tube formation of HUVECs and downregulate the expression of angiogenesis-related proteins, including VEGF, HIF-1α, p-VEGFR2, and N-cadherin, and suppress the activation of AKT and ERK pathways. Additionally, 8a significantly blocked angiogenesis in intersegmental vessels in zebrafish embryos. Notably, in a pancreatic cancer xenograft mouse model, 8a down-regulated the expression of CD31, a marker protein of angiogenesis. These findings suggest that 8a could be a promising antiangiogenic and cancer therapeutic agent.
Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products)
Open AccessArticle
Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from the Collagens of Monkfish (Lophius litulon) Swim Bladders: Isolation, Characterization, Molecular Docking Analysis and Activity Evaluation
Mar. Drugs 2023, 21(10), 516; https://doi.org/10.3390/md21100516 - 28 Sep 2023
Abstract
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54
[...] Read more.
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were −7.3, −10.9 and −9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.
Full article
(This article belongs to the Special Issue Collagen and Bioactives from Marine By-Products)
►▼
Show Figures

Graphical abstract
Open AccessReview
The Antiviral Potential of Algal Lectins
Mar. Drugs 2023, 21(10), 515; https://doi.org/10.3390/md21100515 - 28 Sep 2023
Abstract
Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered
[...] Read more.
Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered special attention for their unique structures and carbohydrate specificities, distinguishing them from lectins derived from other sources. Here, a comprehensive overview of the latest scientific and technological advancements in the realm of algal lectins with a particular focus on their antiviral properties is provided. These lectins have displayed remarkable effectiveness against a wide range of viruses, thereby holding great promise for various antiviral applications. It is worth noting that several alga species have already been successfully commercialized for their antiviral potential. However, the discovery of a diverse array of lectins with potent antiviral capabilities suggests that the field holds immense untapped potential for further expansion. In conclusion, algae stand as a valuable and versatile resource, and their lectins offer an exciting avenue for developing novel antiviral agents, which may lead to the development of cutting-edge antiviral therapies.
Full article
(This article belongs to the Special Issue Advances in Algal Biotechnology)
Open AccessReview
Astaxanthin: Past, Present, and Future
by
, , , , , , , , , and
Mar. Drugs 2023, 21(10), 514; https://doi.org/10.3390/md21100514 - 28 Sep 2023
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX
[...] Read more.
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Full article
(This article belongs to the Special Issue Nutraceutical and Pharmaceutical Applications of Marine Carotenoids)
Open AccessArticle
Anti-Osteoarthritic Effects of Antarctic Krill Oil in Primary Chondrocytes and a Surgical Rat Model of Knee Osteoarthritis
Mar. Drugs 2023, 21(10), 513; https://doi.org/10.3390/md21100513 - 28 Sep 2023
Abstract
Osteoarthritis (OA) is characterized by progressive cartilage destruction and synovitis; however, there are no approved disease-modifying OA drugs. Krill oil (KO) has been reported to possess anti-inflammatory properties and alleviate joint pain in knee OA, indicating its potential to target the inflammatory mechanism
[...] Read more.
Osteoarthritis (OA) is characterized by progressive cartilage destruction and synovitis; however, there are no approved disease-modifying OA drugs. Krill oil (KO) has been reported to possess anti-inflammatory properties and alleviate joint pain in knee OA, indicating its potential to target the inflammatory mechanism of OA. Therefore, the anti-OA effects of KO were investigated in primary chondrocytes and a surgical rat model of knee OA. The oral administration of KO at 200 and 100 mg/kg for 8 weeks improved joint swelling and mobility in the animal model and led to increased bone mineral density and compressive strength in the cartilage. The oral KO doses upregulated chondrogenic genes (type 2 collagen, aggrecan, and Sox9), with inhibition of inflammation markers (5-lipoxygenase and prostaglandin E2) and extracellular matrix (ECM)-degrading enzymes (MMP-2 and MMP-9) in the cartilage and synovium. Consistently, KO treatments increased the viability of chondrocytes exposed to interleukin 1α, accompanied by the upregulation of the chondrogenic genes and the inhibition of the ECM-degrading enzymes. Furthermore, KO demonstrated inhibitory effects on lipopolysaccharide-induced chondrocyte inflammation. Histopathological and immunohistochemical analyses revealed that KO improved joint destruction and synovial inflammation, probably due to the anti-inflammatory, anti-apoptotic, and chondrogenic effects. These findings suggest the therapeutic potential of KO for knee OA.
Full article
(This article belongs to the Special Issue Marine Functional Foods)
►▼
Show Figures

Figure 1
Open AccessArticle
A Terphenyllin Derivative CHNQD-00824 from the Marine Compound Library Induced DNA Damage as a Potential Anticancer Agent
by
, , , , , , and
Mar. Drugs 2023, 21(10), 512; https://doi.org/10.3390/md21100512 - 27 Sep 2023
Abstract
With the emergence of drug resistance and the consequential high morbidity and mortality rates, there is an urgent need to screen and identify new agents for the effective treatment of cancer. Terphenyls—a group of aromatic hydrocarbons consisting of a linear 1,4-diaryl-substituted benzene core—has
[...] Read more.
With the emergence of drug resistance and the consequential high morbidity and mortality rates, there is an urgent need to screen and identify new agents for the effective treatment of cancer. Terphenyls—a group of aromatic hydrocarbons consisting of a linear 1,4-diaryl-substituted benzene core—has exhibited a wide range of biological activities. In this study, we discovered a terphenyllin derivative—CHNQD-00824—derived from the marine compound library as a potential anticancer agent. The cytotoxic activities of the CHNQD-00824 compound were evaluated against 13 different cell lines with IC50 values from 0.16 to 7.64 μM. Further study showed that CHNQD-00824 inhibited the proliferation and migration of cancer cells, possibly by inducing DNA damage. Acridine orange staining demonstrated that CHNQD-00824 promoted apoptosis in zebrafish embryos. Notably, the anti-cancer effectiveness was verified in a doxycin hydrochloride (DOX)-induced liver-specific enlargement model in zebrafish. With Solafinib as a positive control, CHNQD-00824 markedly suppressed tumor growth at concentrations of 2.5 and 5 μM, further highlighting its potential as an effective anticancer agent.
Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products)
►▼
Show Figures

Figure 1
Open AccessArticle
A Comprehensive Computational NMR Analysis of Organic Polyarsenicals including the Marine Sponge-Derived Arsenicins A–D and Their Synthetic Analogs
by
and
Mar. Drugs 2023, 21(10), 511; https://doi.org/10.3390/md21100511 - 27 Sep 2023
Abstract
The adamantane structure of arsenicin A and nor-adamantane structures of arsenicins B–D have gained attention as unique natural polyarsenicals, as well as hits showing promising anticancer activity. The purpose of this study is to apply the predictive power of NMR DFT calculations in
[...] Read more.
The adamantane structure of arsenicin A and nor-adamantane structures of arsenicins B–D have gained attention as unique natural polyarsenicals, as well as hits showing promising anticancer activity. The purpose of this study is to apply the predictive power of NMR DFT calculations in order to identify a valid tool to be used in the structural elucidation of similar molecules. 1H- and 13C-NMR chemical shifts of twelve natural and synthetic polyarsenical analogs were calculated and validated by comparison with experimental data acquired in CDCl3 solutions, in regard to mean absolute error (MAE) values under various combinations of two methods (GIAO and CSGT), four functionals and five basis sets, also considering relativistic effects. The best computational approaches are highlighted for predicting the chemical shifts of 1H and 13C nuclei and J(1H,1H) coupling constants in the series of O- and S-polyarsenicals. This comprehensive analysis contributes to making NMR spectroscopy appealing for the structural elucidation of such molecules, contrary to the first structural elucidation of natural arsenicin A, in which the experimental NMR analysis was limited by the poor presence of proton and carbon atoms in its structure and by the shortage of reference data.
Full article
(This article belongs to the Special Issue Challenges on Structural Determination of Marine Natural Products)
►▼
Show Figures

Graphical abstract
Open AccessReview
Peptides from Marine-Derived Fungi: Chemistry and Biological Activities
Mar. Drugs 2023, 21(10), 510; https://doi.org/10.3390/md21100510 - 26 Sep 2023
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides
[...] Read more.
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity.
Full article
(This article belongs to the Special Issue Marine Pharmacognosy: Selected Papers from the XIV Brazilian Symposium on Pharmacognosy)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Xinghamide A, a New Cyclic Nonapeptide Found in Streptomyces xinghaiensis
Mar. Drugs 2023, 21(10), 509; https://doi.org/10.3390/md21100509 - 26 Sep 2023
Abstract
Xinghamide A (1), a new nonapeptide, was discovered in Streptomyces xinghaiensis isolated from a halophyte, Suaeda maritima (L.) Dumort. Based on high-resolution mass and NMR spectroscopic data, the planar structure of 1 was established, and, in particular, the sequence of nine
[...] Read more.
Xinghamide A (1), a new nonapeptide, was discovered in Streptomyces xinghaiensis isolated from a halophyte, Suaeda maritima (L.) Dumort. Based on high-resolution mass and NMR spectroscopic data, the planar structure of 1 was established, and, in particular, the sequence of nine amino acids was determined with ROESY and HMBC NMR spectra. The absolute configurations of the α-carbon of each amino acid residue were determined with 1-fluoro-2,4-dinitrophenyl-l-and -d-leucine amide (Marfey’s reagents) and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. The anti-inflammatory activity of xinghamide A (1) was evaluated by inhibitory abilities against the nitric oxide (NO) secretion and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.
Full article
(This article belongs to the Special Issue Challenges on Structural Determination of Marine Natural Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural Diversity and Biological Activity of Cyanopeptolins Produced by Nostoc edaphicum CCNP1411
by
, , , , , and
Mar. Drugs 2023, 21(10), 508; https://doi.org/10.3390/md21100508 - 26 Sep 2023
Abstract
Cyanopeptolins (CPs) are one of the most commonly occurring class of cyanobacterial nonribosomal peptides. For the majority of these compounds, protease inhibition has been reported. In the current work, the structural diversity of cyanopeptolins produced by Nostoc edaphicum CCNP1411 was explored. As a
[...] Read more.
Cyanopeptolins (CPs) are one of the most commonly occurring class of cyanobacterial nonribosomal peptides. For the majority of these compounds, protease inhibition has been reported. In the current work, the structural diversity of cyanopeptolins produced by Nostoc edaphicum CCNP1411 was explored. As a result, 93 CPs, including 79 new variants, were detected and structurally characterized based on their mass fragmentation spectra. CPs isolated in higher amounts were additionally characterized by NMR. To the best of our knowledge, this is the highest number of cyanopeptides found in one strain. The biological assays performed with the 34 isolated CPs confirmed the significance of the amino acid located between Thr and the unique 3-amino-6-hydroxy-2-piperidone (Ahp) on the activity of the compounds against serine protease and HeLa cancer cells.
Full article
(This article belongs to the Special Issue Bioactive Metabolites Produced by Marine Cyanobacteria and Other Microalgae)
►▼
Show Figures

Figure 1
Open AccessArticle
Phyllofenones F–M, Scalarane Sesterterpenes from the Marine Sponge Phyllospongia foliascens
by
, , , , , , , and
Mar. Drugs 2023, 21(10), 507; https://doi.org/10.3390/md21100507 - 26 Sep 2023
Abstract
Eight new scalarane sesterterpenes, phyllofenones F–M (1–8), together with two known analogues, carteriofenones B and A (9–10), were isolated from the marine sponge Phyllospongia foliascens collected from the South China Sea. The structures of these
[...] Read more.
Eight new scalarane sesterterpenes, phyllofenones F–M (1–8), together with two known analogues, carteriofenones B and A (9–10), were isolated from the marine sponge Phyllospongia foliascens collected from the South China Sea. The structures of these compounds were determined based on extensive spectroscopic and quantum chemical calculation analysis. The antibacterial and cytotoxic activity of these compounds was evaluated. Among them, only compounds 4 and 6 displayed weak inhibitory activity against Staphylococcus aureus and Escherichia coli, with MIC values of 16 μg/mL and 8 μg/mL, respectively. Compounds 1–10 exhibited cytotoxic activity against the HeLa, HCT-116, H460, and SW1990 cancer cell lines, with IC50 values ranging from 3.4 to 19.8 μM.
Full article
(This article belongs to the Special Issue Marine Bioactive Compound Discovery through OSMAC Approach)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Marine Drugs Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
- 20th Anniversary of Marine Drugs
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 21 (2023)
- Vol. 20 (2022)
- Vol. 19 (2021)
- Vol. 18 (2020)
- Vol. 17 (2019)
- Vol. 16 (2018)
- Vol. 15 (2017)
- Vol. 14 (2016)
- Vol. 13 (2015)
- Vol. 12 (2014)
- Vol. 11 (2013)
- Vol. 10 (2012)
- Vol. 9 (2011)
- Vol. 8 (2010)
- Vol. 7 (2009)
- Vol. 6 (2008)
- Vol. 5 (2007)
- Vol. 4 (2006)
- Vol. 3 (2005)
- Vol. 2 (2004)
- Vol. 1 (2003)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biology, JMSE, Marine Drugs, Microbiology Research
Marine Microbiology: Resources, Ecology, and Biogeochemistry
Topic Editors: Hongyue Dang, Wanpeng Wang, Dongdong Zhang, Xiaoli ZhangDeadline: 15 November 2023
Topic in
Antibiotics, IJMS, Magnetochemistry, Marine Drugs, Molecules
Emerging Aspects in Drug Discovery
Topic Editors: Morkos Henen, Quentin Vicens, Beat Rolf VögeliDeadline: 1 December 2023
Topic in
Biomolecules, CIMB, IJMS, Marine Drugs, Molecules, Plants
Safety and Toxicological Risks of Medicinal Plants and Natural Products: Mechanistic Insights
Topic Editors: Eduardo Sobarzo-Sánchez, Esra Küpeli AkkolDeadline: 15 April 2024
Topic in
Molecules, Pharmaceutics, Antibiotics, Microorganisms, Biomolecules, Marine Drugs, Polymers, IJMS
Antimicrobial Agents and Nanomaterials
Topic Editors: Sandra Pinto, Vasco D. B. BonifácioDeadline: 30 September 2024

Conferences
Special Issues
Special Issue in
Marine Drugs
Metabolic and Neurologic Diseases and Marine Natural Products
Guest Editors: Carmen María Claro-Cala, Maria C. Millan-LinaresDeadline: 18 October 2023
Special Issue in
Marine Drugs
Enzyme Inhibitors from Marine Resources
Guest Editors: Francesc Xavier Avilés, Isel PascualDeadline: 31 October 2023
Special Issue in
Marine Drugs
Honoring Prof. Dr. Valentin A. Stonik for His Outstanding Contribution to Marine Natural Product Chemistry on the Occasion of His 80th Birthday
Guest Editors: Vladimir I. Kalinin, Pavel S. Dmitrenok, Natalia V. IvanchinaDeadline: 30 November 2023
Special Issue in
Marine Drugs
A Theme Issue Honoring Professor Peter Proksch's 70th Birthday: Bioactive Compounds from the Ocean
Guest Editors: Bin-Gui Wang, Haofu DaiDeadline: 6 December 2023
Topical Collections
Topical Collection in
Marine Drugs
Ocean4Biotech
Collection Editors: Ana Rotter, Susana P. Gaudencio, Katja Klun, Marlen I. Vasquez
Topical Collection in
Marine Drugs
Microalgal Active Biomolecules
Collection Editor: Cédric Delattre
Topical Collection in
Marine Drugs
Marine Compounds and Cancer
Collection Editors: Friedemann Honecker, Sergey A. Dyshlovoy