Bubble Column Fluid Dynamics
A special issue of ChemEngineering (ISSN 2305-7084).
Deadline for manuscript submissions: closed (20 September 2018) | Viewed by 72461
Special Issue Editors
Interests: innovative renewable energy-based technologies; CFD and lumped parameter modelling of energy system components; modelling of refrigeration systems; experimental and numerical investigations of multiphase flows; energy poverty
Special Issues, Collections and Topics in MDPI journals
Interests: bubbly flow; multi-phase turbulence; PIV; PTV; CFD
Special Issue Information
Dear Colleagues,
Bubble columns are widely used multiphase reactors where a gas phase is dispersed into a continuous phase. The simplest configuration consists in a vertical cylinder, in which the gas enters through a gas sparger located at the bottom, and the liquid phase is supplied in the batch mode or it may be led in either co-currently or counter-currently to the upward gas stream. Despite the simple column arrangement, bubble columns are characterized by extremely complex fluid dynamic interactions between the phases. For these reasons, their correct design, operation and scale-up rely on the knowledge of the fluid dynamics at “bubble-scale” and at the “reactor-scale”.
An understanding of the fluid dynamics and the transport phenomena in bubble columns (in the homogeneous and heterogeneous flow regimes) is of fundamental importance to support the design and scale-up methods. In this respect, multiphase Computational Fluid-Dynamics (CFD) simulations are particularly useful to study the fluid dynamics in large-scale reactors. Reliable predictions of the homogeneous flow regime with this approach are, however, limited up to now. One important drawback concern the closure models for the interphase forces, turbulence and coalescence and break-up. One difficulty for the model development and validation results from the fact that we still have a lack of knowledge on local phenomena which determine the two-phase flow characteristics and which should be considered in the closure models. To this end, experimental data with high resolution in space and time are requested.
The Special Issue aims to collect contributions of the state-of-the-art on the multi-scale fluid dynamics of bubble columns. The main focus of the volume is on bubble column fluid dynamics without and with mass transfer by using theoretical, experimental, and numerical modeling approaches. Contributions concerning (a) bubble size and shapes and (b) flow regime transition prediction and modeling are strongly encouraged.
Dr. Giorgio Besagni
Dr. Thomas Ziegenhein
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. ChemEngineering is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- multi-phase
- bubble columns
- flow regime
- experimental
- CFD
- Gas holdup
- bubble size and shape
- multi-scale
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.