Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of NiCo Nanoparticles Supported on Organic Group Functionalized Mesoporous Silica
2.2. Characterizations
2.3. Hydrolysis of Ammonia Borane with NixCo100−x@CMS Catalysts
3. Results and Discussion
3.1. Structural and Morphological Characterizations of NixCo100−x@CMS
3.2. Catalytic Hydrolysis of Ammonia Borane by NixCo100−x@CMS for Hydrogen Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, H.-L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63. [Google Scholar] [CrossRef]
- Conte, M.; Iacobazzi, A.; Ronchetti, M.; Vellone, R. Hydrogen economy for a sustainable development: State-of-the-art and technological perspectives. J. Power Sources 2001, 100, 171–187. [Google Scholar] [CrossRef]
- Fakeeha, A.H.; Vadodariya, D.M.; Alotibi, M.F.; Abu-Dahrieh, J.K.; Ibrahim, A.A.; Abasaeed, A.E.; Alarifi, N.; Kumar, R.; Al-Fatesh, A.S. Pd+Al2O3-supported Ni-Co bimetallic catalyst for H2 production through dry reforming of methane: Effect of carbon deposition over active sites. Catalysts 2023, 13, 1374. [Google Scholar] [CrossRef]
- Wang, C.; Shi, P.; Guo, C.; Guo, R.; Qiu, J. CuCo2O4/CF cathode with bifunctional and dual reaction centers exhibits high RhB degradation in electro-Fenton systems. J. Electroanal. Chem. 2024, 956, 118072. [Google Scholar] [CrossRef]
- Vamvuka, D. Gasification of coal. In Clean Use of Coals. Low-Rank Technologies; Multi-Science Publishing: Seattle, WA, USA, 2000; pp. 515–581. [Google Scholar]
- Aralekallu, S.; Lokesh, K.S.; Singh, V.J.F. Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water. Fuel 2024, 357, 129753. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Xu, B.; Liu, X.; Zhang, K.; Fan, G.; Jiang, W. Efficient hydrogen generation from the NaBH4 hydrolysis by cobalt-based catalysts: Positive roles of sulfur-containing salts. ACS Appl. Mater. Interfaces 2020, 12, 9376–9386. [Google Scholar] [CrossRef]
- Ming, M.; Zhang, Y.; He, C.; Zhao, L.; Niu, S.; Fan, G.; Hu, J.S. Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 2019, 15, 1903057. [Google Scholar] [CrossRef]
- Ouyang, L.; Ma, M.; Huang, M.; Duan, R.; Wang, H.; Sun, L.; Zhu, M. Enhanced hydrogen generation properties of MgH2-based hydrides by breaking the magnesium hydroxide passivation layer. Energies 2015, 8, 4237–4252. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Yao, Q.; Feng, G.; Zhu, M.; Lu, L.H. Metal-organic framework immobilized RhNi alloy nanoparticles for complete H2 evolution from hydrazine borane and hydrous hydrazine. Inorg. Chem. Front. 2018, 5, 370–377. [Google Scholar] [CrossRef]
- He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16067. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K.L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Durap, F.; Zahmakiran, M.; Ozkar, S. Water soluble laurate-stabilized rhodium (0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Appl. Catal. A 2009, 369, 53–59. [Google Scholar] [CrossRef]
- Kahri, H.; Sevim, M.; Metin, Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Res. 2017, 10, 1627–1640. [Google Scholar] [CrossRef]
- Chen, J.; Hu, M.; Ming, M.; Xu, C.; Wang, Y.; Zhang, Y.; Wu, J.; Gao, D.; Bi, J.; Fan, G. Carbon-supported small Rh nanoparticles prepared with sodium citrate: Toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis. Int. J. Hydrogen Energy 2018, 43, 2718–2725. [Google Scholar] [CrossRef]
- Aijaz, A.; Karkamkar, A.; Choi, Y.J.; Tsumori, N.; Ronnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929. [Google Scholar] [CrossRef]
- Xi, P.; Chen, F.; Xie, G.; Ma, C.; Liu, H.; Shao, C.; Wang, J.; Xu, Z.; Xu, X.; Zhang, Z. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. Nanoscale 2014, 4, 5597–5601. [Google Scholar] [CrossRef]
- Fuku, R.; Hayashi, K.; Takakura, S.; Kamegawa, T.; Mori, K.; Yamashita, H. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew. Chem. Int. Ed. 2013, 52, 7446–7450. [Google Scholar] [CrossRef]
- Fan, G.; Liu, Q.; Tang, D.; Li, X.; Bi, J.; Gao, D. Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2016, 41, 1542–1549. [Google Scholar] [CrossRef]
- Umegaki, T.; Yan, J.; Zhang, X.; Shioyama, H.; Kuriyama, N.; Xu, Q. Co-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J. Power Sources 2010, 195, 8209–8214. [Google Scholar] [CrossRef]
- Wang, C.; Sun, D.; Yu, X.; Zhang, X.; Lu, Z.; Wang, X.; Zhao, J.; Li, L.; Yang, X. Cu/Ni nanoparticles supported on TiO2(B) nanotubes as hydrogen generation photocatalysts via hydrolysis of ammonia borane. Inorg. Chem. Front. 2018, 5, 2038–2044. [Google Scholar] [CrossRef]
- Lu, D.; Yu, G.; Li, G.Y.; Chen, M.; Pan, Y.; Zhou, L.; Yang, K.; Xiong, X.; Wu, P.; Xia, Q. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane. J. Alloys Compd. 2017, 694, 662–671. [Google Scholar] [CrossRef]
- Yao, Q.; Ding, Y.; Lu, Z. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides. Inorg. Chem. Front. 2020, 7, 3837–3874. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, X.; Lu, Z.; Xu, Q. Metal-organic framework based catalysts for hydrogen production from liquid-phase chemical hydrides. Coord. Chem. Rev. 2023, 493, 215302. [Google Scholar] [CrossRef]
- Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. J. Power Sources 2006, 163, 364–370. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, Z.; Li, J.; Lollar, C.; Liu, L.; Lian, X.; Yuan, S.; Banerjee, S.; Zhang, P.; Zhou, H.C. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew. Chem. Int. Ed. 2018, 57, 5283–5287. [Google Scholar] [CrossRef]
- Metin, O.; Mazumder, V.; Ozkar, S.; Sun, S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Z.; Li, M.; Zhou, X.; Lu, H. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane. ACS Appl. Mater. Interfaces 2014, 6, 13191–13200. [Google Scholar] [CrossRef]
- Yan, L.; Sifang, L. Low-cost CuFeCo@MIL-101 as an efficient catalyst for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2020, 45, 10433–10441. [Google Scholar]
- Guo, K.; Ding, Y.; Luo, J.; Gu, M.; Yu, Z. NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: Composition-dependent activity and support size effect. ACS Appl. Energy Mater. 2019, 2, 5851–5861. [Google Scholar] [CrossRef]
- Fang, H.; Yang, J.; Wen, M.; Wu, Q. Nanoalloy materials for chemical catalysis. Adv. Mater. 2018, 30, 1705698. [Google Scholar] [CrossRef]
- Huo, J.; Wei, H.; Fu, L.; Zhao, L.C.; He, C. Highly active Fe36Co44 bimetallic nanoclusters catalysts for hydrolysis of ammonia borane: The first-principles study. Chin. Chem. Lett. 2023, 34, 107261. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, Q.; Zhang, L.; Zhao, Y.; Zhang, B. NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane. Renew. Energy 2021, 173, 273–282. [Google Scholar] [CrossRef]
- Bulut, A.; Yurderi, M.; Ertas, İ.E.; Celebi, M.; Kaya, M.; Zahmakiran, M. Carbon dispersed copper-cobalt alloy nanoparticles: A cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane. Appl. Catal. B 2016, 180, 121–129. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Yu, X.; Lu, Z.; Zhang, X.; Wang, X.; Yang, X.; Zhao, J. Regulation of d-band electrons to enhance the activity of co-based non-noble bimetal catalysts for hydrolysis of ammonia borane. ACS Sustain. Chem. Eng. 2020, 8, 8256–8266. [Google Scholar] [CrossRef]
- Kazıcı, H.Ç.; İzgi, M.S.; Şahin, Ö. A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chem. Pap. 2021, 75, 2713–2725. [Google Scholar] [CrossRef]
- Mori, K.; Miyawaki, K.; Yamashita, H. Ru and Ru−Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia−borane. ACS Catal. 2016, 6, 3128–3135. [Google Scholar] [CrossRef]
- Zou, X.X.; Huang, X.X.; Goswami, A.; Silva, R.; Sathe, B.R.; Mikmekova, E.; Asefa, T. Angewandte Chemie International Edition; Wiley Press: Hoboken, NJ, USA, 2014; Volume 53, pp. 4372–4376. [Google Scholar]
- Gao, D.; Zhang, Y.; Zhou, L.; Yang, K. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane. Appl. Surf. Sci. 2018, 427, 114–122. [Google Scholar] [CrossRef]
- Lai, S.-W.; Lin, H.-L.; Lin, Y.-P.; Yu, T.L. Hydrolysis of ammonia-borane catalyzed by an iron-nickel alloy on an SBA-15 support. Int. J. Hydrogen Energy 2013, 38, 4636–4647. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, W.; Li, H.; Liu, J.; Xu, Z.; Zheng, S. Size-tunable Ni particles confined in the ordered mesoporous silica for catalytic H2 production from ammonia borane hydrolysis. Int. J. Hydrogen Energy 2024, 58, 964–973. [Google Scholar] [CrossRef]
- Kim, T.; Chung, P.; Lin, V.S.-Y. Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem. Mater. 2010, 22, 5093–5104. [Google Scholar] [CrossRef]
- Zhang, H.; Mou, Y.; Liu, S.; Han, D.; Wang, F.; Bing, L.; Wang, G. MCM-41 supported NiPCeOx nanoparticles as highly efficient non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2023, 48, 34141–34153. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Ma, Y.; Xu, C.; Zhou, S. Synthesis of mesoporous silica-supported NiCo bimetallic nanocatalysts and their enhanced catalytic hydrogenation performance. ACS Omega 2023, 8, 12339–12347. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyńczak, A.; Nowak, I.; Feliczak-Guzik, A. SBA-15- and SBA-16-functionalized silicas as new carriers of niacinamide. Int. J. Mol. Sci. 2023, 24, 17567. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Bai, P.; Yan, Z.; Zhao, G.X.S. Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Sci. Rep. 2016, 6, 18817. [Google Scholar] [CrossRef]
- Deka, J.R.; Kao, H.-M.; Huang, S.-Y.; Chang, W.; Ting, C.-C.; Rath, P.C.; Chen, C.-S. Ethane bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acid groups: Synthesis, bifunctionalization, and fabrication of metal nanoparticles. Chem. Eur. J. 2014, 20, 894–903. [Google Scholar] [CrossRef]
- Zhu, H.; Lee, B.; Dai, S.; Overbury, S.H. Coassembly synthesis of ordered mesoporous silica materials containing Au nanoparticles. Langmuir 2003, 19, 3974–3980. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Liu, J.; Liu, R.; Liu, T. Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: Highly efficient hydrolysis of ammonia borane. Mater. Chem. Phys. 2018, 204, 58–61. [Google Scholar] [CrossRef]
- Feng, W.; Yang, L.; Cao, N.; Du, C.; Dai, H.; Luo, W.; Cheng, G. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. Int. J. Hydrogen Energy 2014, 39, 3371–3380. [Google Scholar] [CrossRef]
- Shingole, M.; Banerjee, S.; Ruz, P.; Kolay, S.; Kumar, A.; Sudarsan, V. Catalytic hydrogen generation through ammonia borane hydrolysis using metal−organic framework via O−H bond activation. Energy Fuels 2024, 38, 8968–8978. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, T.; Wang, Q.; Gao, G. Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane. RSC Adv. 2018, 8, 843–847. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, F.; Wang, H.; Yao, Q.; Chen, X.; Lu, Z.-H. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation. J. Nanomater. 2014, 9, 294350. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, J.; Zhou, L.; Long, D.; Feng, K.; Sun, X.; Zhong, J. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane. Appl. Surf. Sci. 2016, 362, 79–85. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Du, F.; Liu, T. A cost effective cobalt nickel nanoparticles catalyst with exceptional performance for hydrolysis of ammonia-borane. J. Nanosci. Nanotechnol. 2017, 17, 9333–9338. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, Y.; Zhao, Y.; Zhao, X.; Lang, Z.; Tan, H.; Qiu, T.; Wang, Y. Superfine CoNi alloy embedded in Al2O3 nanosheets for efficient tandem catalytic reduction of nitroaromatic compounds by ammonia borane. Dalton Trans. 2019, 48, 17499–17506. [Google Scholar] [CrossRef]
- Fan, D.; Lv, X.; Feng, J.; Zhang, S.; Bai, J.; Lu, R.; Liu, J. Cobalt nickel nanoparticles encapsulated within hexagonal boron nitride as stable, catalytic dehydrogenation nanoreactor. Int. J. Hydrogen Energy 2017, 42, 11312–11320. [Google Scholar] [CrossRef]
- Yang, C.; Men, Y.; Xu, Y.; Liang, L.; Cai, P.; Luo, W. In situ synthesis of NiCoP nanoparticles supported on reduced graphene oxide for catalytic hydrolysis of ammonia borane. ChemPlusChem 2019, 84, 382–386. [Google Scholar] [CrossRef]
- Cong, W.; Zhang, H.; Bing, L.; Wang, F.; Han, D.; Wang, G. CoNi nanoparticles supported on hierarchical SAPO-34 zeolite as a catalyst for the hydrolytic dehydrogenation of ammonia borane. ACS Appl. Nano Mater. 2023, 6, 21991–22000. [Google Scholar] [CrossRef]
- Deka, J.R.; Saikia, D.; Lu, N.-F.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C. Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Appl. Surf. Sci. 2021, 538, 148091. [Google Scholar] [CrossRef]
- Deka, J.R.; Lee, M.-H.; Saikia, D.; Kao, H.-M.; Yang, Y.-C. Confinement of Cu nanoparticles in the nanocages of large pore SBA-16 functionalized with carboxylic acid: Enhanced activity and improved durability for 4-nitrophenol reduction. Dalton Trans. 2019, 48, 8227–8237. [Google Scholar] [CrossRef]
- Fiorilli, S.; Camarota, B.; Perrachon, D.; Bruzzoniti, M.C.; Garrone, E.; Onida, B. Direct synthesis of large-pore ethane-bridged mesoporous organosilica functionalized with carboxylic groups. Chem. Commun. 2009, 29, 4402–4404. [Google Scholar] [CrossRef]
- Guan, D.; Zhong, J.; Xu, H.; Huang, Y.-C.; Hu, Z.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X.; Zhou, W.; et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422. [Google Scholar] [CrossRef]
- Gao, S.; Yang, S.-H.; Wang, H.-Y.; Wang, G.-S.; Yin, P.-G.; Zhang, X.-J. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation. Compos. Part B 2021, 215, 108781. [Google Scholar] [CrossRef]
- Coey, J.M. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; pp. 244–251. [Google Scholar]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Meudal, J.; Laffir, F.; Thompson, J.; Rooney, D. Enhanced catalytic activity of Ni on η-Al2O3 and ZSM-5 on the addition of ceria-zirconia for the partial oxidation of methane. Appl. Catal. B 2017, 212, 68–79. [Google Scholar] [CrossRef]
- Sheng, Y.; Lin, X.; Yue, S.; Liu, Y.; Zou, X.; Wang, X.; Lu, X. Highly efficient non-noble metallic NiCu nanoalloy catalysts for hydrogenation of nitroarenes. Mater. Adv. 2021, 2, 6722–6730. [Google Scholar] [CrossRef]
- Xu, Q.; Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia–borane. J. Alloys Compd. 2007, 446, 729–732. [Google Scholar] [CrossRef]
- Peng, S.; Cao, Y.; Zhou, F.; Xu, Z.; Li, Y. CoP decorated with Co3O4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Appl. Surf. Sci. 2019, 487, 315–321. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, Y.; Li, Y.; Zhao, K.; Deng, H.; Lou, Y.; Chen, J.; Yu, H.; Cheng, L. Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4-decorated ZnO@ZnS core-shell structures. Chem. Eng. J. 2020, 393, 124681. [Google Scholar] [CrossRef]
- Lee, M.-H.; Deka, J.R.; Cheng, C.-J.; Lu, N.-F.; Saikia, D.; Yang, Y.-C.; Kao, H.-M. Synthesis of highly dispersed ultra-small cobalt nanoparticles within the cage-type mesopores of 3D cubic mesoporous silica via double agent reduction method for catalytic hydrogen generation. Appl. Surf. Sci. 2019, 470, 764–772. [Google Scholar] [CrossRef]
- Akdim, O.; Demirci, U.B.; Miele, P. Deactivation and reactivation of cobalt in hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2011, 36, 13669–13675. [Google Scholar] [CrossRef]
Sample | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Metal Amount (wt.%) a | |
---|---|---|---|---|---|
CMS | 616 | 1.16 | 6.0 | - | |
Ni@CMS | 450 | 1.05 | 6.0 | 6.11 | Ni (6.11) |
Co (-) | |||||
Co@CMS | 468 | 1.05 | 6.0 | 4.95 | Ni (-) |
Co (4.95) | |||||
Ni80Co20@CMS | 444 | 1.04 | 6.0 | 4.87 | Ni (3.84) |
Co (1.03) | |||||
Ni60Co40@CMS | 435 | 1.03 | 5.8 | 5.07 | Ni (2.07) |
Co (3.00) | |||||
Ni40Co60@CMS | 490 | 1.09 | 5.9 | 5.83 | Ni (2.22) |
Co (3.61) | |||||
Ni20Co80@CMS | 454 | 1.05 | 6.0 | 5.90 | Ni (1.13) |
Co (4.77) |
Catalysts | Temperature (°C) | TOF (molH2min−1molCatalyst−1) | Ea (kJ mol−1) | Ref. |
---|---|---|---|---|
Ni40Co60@CMS | 30 | 18.95 | 36.43 | This work |
NiCo-NC | 25 | 16.7 | 43.6 | [33] |
CoNi/MCNTs | 30 | 33 | 52.1 | [49] |
CoNi@RGO | 25 | 19.54 | 39.89 | [53] |
NiCo-GO | 25 | 6.78 | - | [54] |
CoNi/XC-72 | 50 | 49 | 28.9 | [55] |
CoNi/Al2O3 | 25 | 34.5 | 32.9 | [56] |
CoNi@h-BN | 20 | - | 28 | [57] |
Co89.8Ni10.8P11.7/rGO | 25 | 18.6 | 25.0 | [58] |
Co3.33Ni1.67/SAPO-34-N | 30 | 9.25 | 55.01 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deka, J.R.; Saikia, D.; Lu, N.-F.; Chen, C.-Y.; Kao, H.-M.; Yang, Y.-C. Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis. Nanomaterials 2024, 14, 1818. https://doi.org/10.3390/nano14221818
Deka JR, Saikia D, Lu N-F, Chen C-Y, Kao H-M, Yang Y-C. Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis. Nanomaterials. 2024; 14(22):1818. https://doi.org/10.3390/nano14221818
Chicago/Turabian StyleDeka, Juti Rani, Diganta Saikia, Ning-Fang Lu, Chieh-Yu Chen, Hsien-Ming Kao, and Yung-Chin Yang. 2024. "Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis" Nanomaterials 14, no. 22: 1818. https://doi.org/10.3390/nano14221818
APA StyleDeka, J. R., Saikia, D., Lu, N.-F., Chen, C.-Y., Kao, H.-M., & Yang, Y.-C. (2024). Bimetallic NiCo Nanoparticles Embedded in Organic Group Functionalized Mesoporous Silica for Efficient Hydrogen Production from Ammonia Borane Hydrolysis. Nanomaterials, 14(22), 1818. https://doi.org/10.3390/nano14221818