Next Issue
Volume 2, March
 
 

J. Pharm. BioTech Ind., Volume 1, Issue 1 (December 2024) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
34 pages, 1227 KiB  
Review
Non-Traditional Natural Stabilizers in Drug Nanosuspensions
by Simay Ozsoysal and Ecevit Bilgili
J. Pharm. BioTech Ind. 2024, 1(1), 38-71; https://doi.org/10.3390/jpbi1010005 - 13 Dec 2024
Viewed by 1211
Abstract
Poor solubility of many drugs, with ensuing low bioavailability, is a big challenge in pharmaceutical development. Nanosuspensions have emerged as a platform approach for long-acting injectables and solid dosages that enhance drug bioavailability. Despite improvements in nanosuspension preparation methods, ensuring nanosuspension stability remains [...] Read more.
Poor solubility of many drugs, with ensuing low bioavailability, is a big challenge in pharmaceutical development. Nanosuspensions have emerged as a platform approach for long-acting injectables and solid dosages that enhance drug bioavailability. Despite improvements in nanosuspension preparation methods, ensuring nanosuspension stability remains a critical issue. Conventionally, synthetic and semi-synthetic polymers and surfactants are used in nanosuspension formulations. However, no polymer or surfactant group is universally applicable to all drugs. This fact, as well as their toxicity and side effects, especially if used in excess, have sparked the interest of researchers in the search for novel, natural stabilizers. The objective of this paper is to provide a comprehensive analysis of non-traditional natural stabilizers reported in the literature published over the last decade. First, physical stability and stabilization mechanisms are briefly reviewed. Then, various classes of non-traditional natural stabilizers are introduced, with particular emphasis on their stabilization potential, safety, and pharmaceutical acceptability. Wherever data were available, their performance was compared with the traditional stabilizers. Furthermore, the benefits and limitations of using these stabilizers are examined, concluding with future prospects. This review is expected to serve as a valuable guide for researchers and formulators, offering insights into non-traditional natural stabilizers in drug nanosuspension formulations. Full article
Show Figures

Graphical abstract

18 pages, 10957 KiB  
Article
The Formulation, Preparation, and Evaluation of Celecoxib Nanosuspensions: Nanosizing via High-Pressure Homogenization and Conversion of the Nanosuspensions into Dry Powders by Spray Drying and Freeze Drying
by Rukesh Machamasi, Sung-Joo Hwang and Linh Dinh
J. Pharm. BioTech Ind. 2024, 1(1), 20-37; https://doi.org/10.3390/jpbi1010004 - 12 Dec 2024
Viewed by 881
Abstract
Celecoxib (CEL), a nonsteroidal anti-inflammation drug (NSAID), is categorized as a Class II drug (low solubility, high permeability) in the Biopharmaceutics Classification System (BCS). The aim of this study is to develop a novel formulation of CEL nanosuspensions in the form of dried [...] Read more.
Celecoxib (CEL), a nonsteroidal anti-inflammation drug (NSAID), is categorized as a Class II drug (low solubility, high permeability) in the Biopharmaceutics Classification System (BCS). The aim of this study is to develop a novel formulation of CEL nanosuspensions in the form of dried powder for tableting or capsuling. In this study, CEL was formulated into nanosuspensions to improve its solubility. CEL nanosuspensions were prepared using the precipitation method followed by high-pressure homogenization. Drying of the nanosuspensions was performed by spray drying and freeze drying. We examined the impact of various formulation and processing parameters on the nanoparticles. The CEL nanoparticles were characterized by particle size analysis, differential scanning calorimetry (DSC), powder X-Ray diffraction (PXRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and dissolution tests. The choice of solvent, stabilizer, and surfactant appeared to have significant impacts on the crystallization and particle size and, consequently, the solubility of the CEL nanoparticles. CEL chemical stability was maintained throughout both drying processes. Both spray-dried and freeze-dried CEL nanosuspensions showed rapid dissolution profiles compared to raw CEL due to the nanosized particle dispersion with the presence of a lag phase. The freeze-dried nanosuspension showed a slight delay in the first 20 min compared to the spray-dried nanosuspension, after which dissolution progressed with a lag phase that represents aggregation. Full article
Show Figures

Figure 1

2 pages, 260 KiB  
Editorial
Journal of Pharmaceutical and BioTech Industry: A New Open Access Journal
by Ecevit Bilgili
J. Pharm. BioTech Ind. 2024, 1(1), 18-19; https://doi.org/10.3390/jpbi1010003 - 12 Sep 2024
Viewed by 1426
Abstract
The pharmaceutical and biotechnology industry continues to be one of the most important industry sectors for various reasons [...] Full article
16 pages, 2769 KiB  
Article
Preparation of Indomethacin Co-Crystals; Comparison of XRD, THz, and FT-IR Spectral Analyses; and Enhancement of Solubility
by Chih-Chin Hsu, Chih-Tse Hung, Ya-Hsuan Lin, Hua-Jeng Tsai, Po-Chih Hu, Yi-Ping Lin, Jyh-Chern Chen, Shen-Fu Hsu and Hsyue-Jen Hsieh
J. Pharm. BioTech Ind. 2024, 1(1), 2-17; https://doi.org/10.3390/jpbi1010002 - 26 Jul 2024
Viewed by 1620
Abstract
Background: The aqueous solubility of indomethacin, a poorly water-soluble anti-inflammatory drug, was enhanced by co-crystallization with co-formers. The co-crystals were characterized and compared by an X-ray diffraction (XRD) analysis, terahertz (THz) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Methods: Indomethacin co-crystals with either [...] Read more.
Background: The aqueous solubility of indomethacin, a poorly water-soluble anti-inflammatory drug, was enhanced by co-crystallization with co-formers. The co-crystals were characterized and compared by an X-ray diffraction (XRD) analysis, terahertz (THz) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Methods: Indomethacin co-crystals with either amides (saccharin, nicotine amide, and urea) or amino acids (lysine and histidine) as co-formers were prepared through the solvent evaporation method. The co-crystals were characterized by XRD, THz, and FT-IR analyses, followed by solubility tests to examine the solubility enhancement. Results: Both the XRD and THz analyses were capable of distinguishing co-crystals from physical mixtures; however, the THz spectra were relatively simpler and clearer than the XRD analysis. Furthermore, the solubility of indomethacin was successfully increased by two to three times that of pure indomethacin after co-crystallization with the above five co-formers. Conclusion: Five kinds of indomethacin co-crystals (with enhanced solubility) were successfully prepared and confirmed by the three spectroscopy techniques, XRD, THz, and FT-IR. The identification of co-crystals was achieved by a THz analysis, giving relatively simpler and clearer spectra with less noise. Hence, in addition to an XRD analysis, a THz analysis (a non-destructive, non-ionizing radiative, and relatively rapid measurement technique which is convenient and safe to use) is a good alternative method to characterize co-crystals. Full article
Show Figures

Graphical abstract

1 pages, 156 KiB  
Editorial
Publisher’s Note: Journal of Pharmaceutical and BioTech Industry, a New Open Access Journal
by Ioana Craciun
J. Pharm. BioTech Ind. 2024, 1(1), 1; https://doi.org/10.3390/jpbi1010001 - 7 Feb 2024
Viewed by 1682
Abstract
Collaborations between academia and industry serve as a powerful catalyst for scientific progress, synergizing the strengths of both sectors [...] Full article
Next Issue
Back to TopTop