Next Issue
Volume 3, June
Previous Issue
Volume 2, December
 
 

Hardware, Volume 3, Issue 1 (March 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 5705 KiB  
Perspective
Volumetric Additive Manufacturing: Ushering in a New Era of Fabrication
by Jonathan E. Thompson
Hardware 2025, 3(1), 2; https://doi.org/10.3390/hardware3010002 - 4 Mar 2025
Viewed by 584
Abstract
Additive manufacturing (AM), commonly known as 3D printing, is revolutionizing manufacturing, medicine, and engineering. This perspective explores recent breakthroughs that position AM as a disruptive technology. Innovations like volumetric additive manufacturing (VAM) enable rapid, high-resolution, layer-free fabrication, overcoming limitations of traditional methods. Multi-material [...] Read more.
Additive manufacturing (AM), commonly known as 3D printing, is revolutionizing manufacturing, medicine, and engineering. This perspective explores recent breakthroughs that position AM as a disruptive technology. Innovations like volumetric additive manufacturing (VAM) enable rapid, high-resolution, layer-free fabrication, overcoming limitations of traditional methods. Multi-material printing allows the integration of diverse functionalities—fluid channels, structural elements, and possibly functional electronic circuits—within a single device. Advances in material science, such as biocompatible polymers, ceramics, and transparent silica glass, expand the applicability of AM across healthcare, aerospace, and environmental sectors. Emerging applications include custom implants, microfluidic devices, various sensors, and optoelectronics. Despite its potential, challenges such as scalability, material diversity, and process optimization remain active and critical research areas. Addressing these gaps through interdisciplinary collaboration over the coming decade will solidify AM’s transformative role in reshaping production and fostering innovation across many industries. Full article
Show Figures

Figure 1

26 pages, 555 KiB  
Review
Advances in Energy Harvesting for Sustainable Wireless Sensor Networks: Challenges and Opportunities
by Muhammad Umer Mushtaq, Hein Venter, Avinash Singh and Muhammad Owais
Hardware 2025, 3(1), 1; https://doi.org/10.3390/hardware3010001 - 20 Feb 2025
Viewed by 1052
Abstract
Energy harvesting wireless sensor networks (EH-WSNs) appear as the fundamental backbone of research that attempts to expand the lifespan and efficiency of sensor networks positioned in resource-constrained environments. This review paper provides an in-depth examination of latest developments in this area, highlighting the [...] Read more.
Energy harvesting wireless sensor networks (EH-WSNs) appear as the fundamental backbone of research that attempts to expand the lifespan and efficiency of sensor networks positioned in resource-constrained environments. This review paper provides an in-depth examination of latest developments in this area, highlighting the important components comprising routing protocols, energy management plans, cognitive radio applications, physical layer security (PLS), and EH approaches. Across a well-ordered investigation of these features, this article clarifies the notable developments in technology, highlights recent barriers, and inquires avenues for future revolution. This article starts by furnishing a detailed analysis of different energy harvesting methodologies, incorporating solar, thermal, kinetic, and radio frequency (RF) energy, and their respective efficacy in non-identical operational circumstances. It also inspects state-of-the-art energy management techniques aimed at optimizing energy consumption and storage to guarantee network operability. Moreover, the integration of cognitive radio into EH-WSNs is acutely assessed, highlighting its capacity to improve spectrum efficiency and tackle associated technological problems. The present work investigates ground-breaking methodologies in PLS that uses energy-harvesting measures to improve the data security. In this review article, these techniques are explored with respect to classical encryption and discussed from network security points of view as well.The assessment furthers criticizes traditional routing protocols and their significance in EH-WSNs as well as the balance that has long been sought between energy efficiency and security in this space. This paper closes with the importance of continuous research to tackle existing challenges and to leverage newly available means as highlighted in this document. In order to adequately serve the increasingly changing requirements of EH-WSNs, future research will and should be geared towards incorporating AI techniques with some advanced energy storage solutions. This paper discusses the integration of novel methodologies and interdisciplinary advancements for better performance, security, and sustainability for WSNs. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop