Machine Learning Approach for Local Atmospheric Emission Predictions
Abstract
:1. Introduction
2. Methodology for Emission Inventory Development
- Source classification
- Definition of the pollutant
- Methodological tier
- Database and methodology update level
- Technical insight
- Accuracy and completeness of point sources
- Availability of specific studies and technical insights
- Availability of the required indicator
- Technical methodological proxy
- Disaggregation from a scale above the regional scale
- Alignment of the reference year
- Methods of reconstruction of the time-series or completion of the indicator
- Variation of administrative contexts
- Economic and production context
2.1. Methodology for Emission Estimates of BC, EC, OC and LG
2.2. Methodology for Machine Learning Applied to Emission Inventory
- reduce the processing time for local emission inventories;
- find the most important variables affecting the spatialization of different pollutants in agreement with the main emission source characteristics, e.g., level of urbanization for BC, livestock’s consistency for NH3.
- harmonize the results of different local emission inventories with national emission reporting.
3. Results of the Emission Inventory for the Po Basin
Extension of the Emission Inventory for the Po Basin by Machine Learning to Italy
- Train RF with minimal depth, and variable reduction, considering emission density
- Train RF with minimal depth, and variable reduction, considering 95-percentile emission density
- Train RF with minimal depth, and variable reduction, considering emission rates
- Train RF with minimal depth, and variable reduction, considering 95-percentile emission rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavanchy, V.M.H.; Gäggeler, H.W.; Schotterer, U.; Schwikowski, M.; Baltensperger, U. Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). J. Geophys. Res. 1999, 104, 21227–21236. [Google Scholar] [CrossRef]
- Caserini, S.; Galante, S.; Ozgen, S.; Cucco, S.; de Gregorio, K.; Moretti, M. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy. Sci. Total Environ. 2013, 450–451, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Salma, I.; Chi, X.; Maenhaut, W. Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmos. Environ. 2004, 38, 27–36. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; De Angelo, B.J.; Flanner, M.G.; Ghan, S.; Karcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Rönkkö, T.; Saarikoski, S.; Kuittinen, N.; Karjalainen, P.; Keskinen, H.; Järvinen, A.; Mylläri, F.; Aakko-Saksa, P.; Timonen, H. Review of black carbon emission factors from different anthropogenic sources. Environ. Res. Lett. 2023, 18, 033004. [Google Scholar] [CrossRef]
- WHO. Improving the Capacity of Countries to Report on Air Quality in Cities: Users’ Guide to the Repository of United Nations Tools; Global Report; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Gidhagen, L.; Krecl, P.; Créso Targino, A.; Polezer, G.; Godoi, R.H.M.; Felix, E.P.; Cipoli, Y.; Charres, I.; Malucelli, F.; Wolf, A.; et al. An integrated assessment of the impacts of PM2.5 and black carbon particles on the air quality of a large Brazilian city. Air Qual. Atmos. Health 2021, 14, 1455–1473. [Google Scholar] [CrossRef]
- Xiong, R.; Li, J.; Zhang, Y.; Zhang, L.; Jiang, K.; Zheng, H.; Kong, S.; Shen, H.; Cheng, H.; Shen, G.; et al. Global brown carbon emission from combustion sources. Environ. Sci. Ecotechnol. 2022, 12, 100201. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. A review of biomarker compounds as source indicators and tracers for air pollution. Environ. Sci. Pollut. 1999, 6, 159–169. [Google Scholar] [CrossRef]
- Simpson, D.; Kuenen, J.; Fagerli, H.; Heinesen, D.; Benedictow, A.; van der Gon, H.D.; Visschedijk, A.; Klimont, Z.; Aas, W.; Lin, Y.; et al. Revising PM2.5 Emissions from Residential Combustion, 2005–2019 Implications for Air Quality Concentrations and Trends; Nordic Council of Ministers: Copenhagen, Denmark, 2022; ISBN 978-92-893-7357-9. [Google Scholar] [CrossRef]
- Leithead, A.; Li, S.-M.; Hoff, R.; Cheng, Y.; Brook, J. Levoglucosan and dehydroabietic acid: Evidence of biomass burning impact on aerosols in the Lower Fraser Valley. Atmos. Environ. 2006, 40, 2721–2734. [Google Scholar] [CrossRef]
- Bhattarai, H.; Saikawa, E.; Wan, X.; Zhu, H.; Ram, K.; Gao, S.; Kang, S.; Zhang, Q.; Zhang, Y.; Wu, G.; et al. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmos. Res. 2019, 220, 20–33. [Google Scholar] [CrossRef]
- Piazzalunga, A.; Belis, C.; Bernardoni, V.; Cazzuli, O.; Fermoa, P.; Valli, G.; Vecchi, R. Estimates of wood burning contribution to PM by the macro-tracer method using tailored emission factors. Atmos. Environ. 2011, 45, 6642–6649. [Google Scholar] [CrossRef]
- Galindo, N.; Clemente, A.; Yubero, E.; Nicolàs, J.F.; Crespo, J. PM10 chemical composition at a residential site in the western mediterranean: Estimation of the contribution of biomass burning from levoglucosan and its isomers. Environ. Res. 2020, 196, 110394. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Grivas, G.; Oikonomou, K.; Tavernaraki, P.; Papoutsidaki, K.; Tsagkaraki, M.; Stavroulas, I.; Zarmpas, P.; Paraskevopoulou, D.; Bougiatioti, A.; et al. Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmos. Environ. 2022, 280, 119139. [Google Scholar] [CrossRef]
- Hoffmann, D.; Tilgner, A.; Iinuma, Y.; Herrmann, H. Atmospheric stability of levoglucosan: A detailed laboratory study. Environ. Sci. Technol. 2010, 44, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Zotter, P.; Ciobanu, V.G.; Zhang, Y.L.; El-Haddad, I.; Macchia, M.C.; Daellenbach, K.R.; Salazar, G.; Huang, R.-J.; Wacker, L.; Hueglin, C.; et al. Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012—Part 1: Source apportionment and spatial variability. Atmos. Chem. Phys. 2014, 14, 13551–13570. [Google Scholar] [CrossRef]
- Hedberg, E.; Johansson, C.; Johansson, L.; Swietlicki, E.; Brorström-Lundèn, E. Is levoglucosan a suitable quantitative tracer for wood burning? Comparison with receptor modeling on trace elements in Lycksele, Sweden. J. Air Waste Manage. Assoc. 2006, 56, 1669–1678. [Google Scholar] [CrossRef]
- Gelencsér, A.; May, B.; Simpson, D.; Sànchez-Ochoa, A.; Kasper-Giebl, A.; Puxbaum, H.; Caseiro, A.; Pio, C.; Legrand, M. Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, fossil/biogenic origin. J. Geophys. Res. 2007, 112, D23S04. [Google Scholar] [CrossRef]
- Szidat, S.; Ruff, M.; Perron, N.; Wacker, L.; Synal, H.-A.; Hallquist, M.; Shannigrahi, A.S.; Yttri, K.E.; Dye, C.; Simpson, D. Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden. Atmos. Chem. Phys. 2009, 9, 1521–1535. [Google Scholar] [CrossRef]
- Szidat, S.; Jenk, T.M.; Gäggler, H.W.; Synal, H.-A.; Fisseha, R.; Baltensperger, U.; Kalberer, M.; Samburova, V.; Reimann, S.; Kasper-Giebl, A.; et al. Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmos. Environ. 2004, 38, 4035–4044. [Google Scholar] [CrossRef]
- Yttri, K.E.; Simpson, D.; Stenström, K.; Puxbaum, H.; Svendby, T. Source apportionment of the carbonaceous aerosol in Norway -- Quantitative estimates based on 14C, thermaloptical and organic tracer analysis. Atmos. Chem. Phys. 2011, 11, 9375–9394. [Google Scholar] [CrossRef]
- Yttri, K.E.; Dye, C.; Braathen, O.-A.; Simpson, D.; Steinnes, E. Carbonaceous aerosols at urban influenced sites in Norway. Atmos. Chem. Phys. 2009, 9, 2007–2020. [Google Scholar] [CrossRef]
- Yttri, K.E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; et al. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples. Atmos. Meas. Tech. 2015, 8, 125–147. [Google Scholar] [CrossRef]
- Veratti, G.; Stortini, M.; Amorati, R.; Bressan, L.; Giovannini, G.; Bande, S.; Bissardella, F.; Ghigo, S.; Angelino, E.; Colombo, L.; et al. Impact of NOx and NH3 Emission Reduction on Particulate Matter across Po Valley: A LIFE-IP-PREPAIR Study. Atmosphere 2023, 14, 762. [Google Scholar] [CrossRef]
- Colombo, L.; Marongiu, A.; Fossati, G.; Malvestiti, G.; Angelino, E. PM2.5 wintertime sensitivity to changes in NOx, SO2, and NH3 emissions in Lombardy Region. Air Qual Atmos Health 2024, 17, 1451–1466. [Google Scholar] [CrossRef]
- Marongiu, A.; Collalto, A.G.; Distefano, G.G.; Angelino, E. Application of Machine Learning to Estimate Ammonia Atmospheric Emissions and Concentrations. Air 2024, 2, 38–60. [Google Scholar] [CrossRef]
- Park, J.; Kim, E.; Oh, S.; Kim, H.; Kim, S.; Kim, Y.P.; Song, M. Contributions of Ammonia to High Concentrations of PM2.5 in an Urban Area. Atmosphere 2021, 12, 1676. [Google Scholar] [CrossRef]
- Kabelitz, T.; Ammon, C.; Funk, R.; Münch, S.; Biniasch, O.; Nübel, U.; Thiel, N.; Rösler, U.; Siller, P.; Amon, B.; et al. Functional relationship of particulate matter (PM) emissions, animal species and moisture content during manure application 2020. Env. Int. 2020, 143, 105577. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, A.; Angelino, E.; Moretti, M.; Malvestiti, G.; Fossati, G. Atmospheric Emission Sources in the Po-Basin from the LIFE-IP PREPAIR Project 2022, Open Journal of Air Pollution, Vol.11 No.3, September 2022; Environmental Protection Agency of Lombardia Region, Air Quality Modeling and Inventory Unit, Monitoring Sector ARPA: Milano, Italy, 2022. [Google Scholar]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving Air Quality in the Po Valley, Italy: Some Results by the LIFE-IP-PREPAIR Project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef]
- DIRECTIVE (EU) 2008/50 on Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF (accessed on 28 June 2024).
- D.lgs. 155/10. Attuazione Della Direttiva 2008/50/CE Relativa Alla Qualità Dell’aria Ambiente e per Un’aria Più Pulita in Europa. Available online: https://web.camera.it/parlam/leggi/deleghe/10155dl.htm (accessed on 28 June 2024).
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (accessed on 2 September 2024).
- EMEP/EEA Air pollutant EMISSION inventory GUIDEBOOK 2019. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 2 September 2024).
- CTN_ACE. Linee Guida Agli inventari LOCALI di Emissioni in Atmosfera. 2001. Available online: https://www.isprambiente.gov.it/files/aria/lineeguidainventariemissioniatmosfera.pdf (accessed on 28 June 2024).
- SNPA. Inventari regionali delle emissioni in atmosfera e loro articolazione a livello locale. 2016. Available online: https://www.snpambiente.it/wp-content/uploads/2018/11/DOC-78_CF-Inventari-emisisoni-in-atm-con-allegati.pdf (accessed on 28 June 2024).
- ARPA Lombardia. IN.EM.AR. Official Site. 2021. Available online: www.inemar.eu (accessed on 2 September 2024).
- Kupiainen, K.; Klimont, Z. Primary emissions of fine carbonaceous particles in Europe. Atmos. Environ. 2007, 41, 2156–2170. [Google Scholar] [CrossRef]
- Winther, M.; Nielsen, O.K. Technology dependent BC and OC emissions for Denmark, Greenland and the Faroe Islands calculated for the time period 1990–2030. Atmos. Environ. 2011, 45, 5880–5895. [Google Scholar] [CrossRef]
- Hu, Y.; Kong, S.; Cheng, Y.; Shen, G.; Liu, D.; Wang, S.; Guo, L.; Fu, P. Identification and Parametrization of Key Factors Affecting Levoglucosan Emission During Solid Fuel Burning. Environ. Sci. Technol. 2023, 57, 20043–20052. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.; Farias, O.; Quiroz, R.; Yañez, J. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile. J Air Waste Manag. Assoc. 2017, 67, 806–813. [Google Scholar] [CrossRef] [PubMed]
- De Lotto, R.; Bellati, R.; Moretti, M. Correlation Methodologies between Land Use and Greenhouse Gas emissions: The Case of Pavia Province (Italy). Air 2024, 2, 86–108. [Google Scholar] [CrossRef]
- ISPRA. La disaggregazione a livello provinciale dell’inventario nazionale delle emissioni, ISPRA Rapporti 369/2022. Tech. Rep. 2009, 92, 2009. [Google Scholar]
- Emissions of Atmospheric Compounds and Compilation of Ancillary Data—ECCAD. Available online: https://eccad.sedoo.fr/#/catalogue (accessed on 25 July 2024).
- Ishwaran, H.; Kogalur, U.B. Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). 2023. Available online: https://ishwaran.org/ (accessed on 1 April 2023).
- Ishwaran, H.; Kogalur, U.B. Random Survival Forests for R. R News 2007, 7, 25–31. [Google Scholar]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random Survival Forests 1. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Ishwaran, H.; Lu, M.; Lauer, M.S.; Blackstone, E.H.; Kogalur, U.B. randomForestSRC: Getting Started with randomForestSRC Vignette. 2021. Available online: http://randomforestsrc.org/articles/survival.html (accessed on 22 June 2023).
- EEA 2023, Air pollutant emissions data viewer of the data contained in the EU emission inventory report 1990-2021 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). Available online: https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-5 (accessed on 2 July 2024).
- Granier, C.; Darras, S.; van der Gon, H.D.; Doubalova, J.; Elguindi, N.; Galle, B.; Gauss, M.; Guevara, M.; Jalkanen, J.-P.; Kuenen, J.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions 2019 (April 2019 Version) Report April 2019 Version. Ph.D. Dissertation, Copernicus Atmosphere Monitoring Service, Reading, UK. [CrossRef]
- Soulie, A.; Granier, C.; Darras, S.; Zilbermann, N.; Doumbia, T.; Guevara, M.; Jalkanen, J.-P.; Keita, S.; Liousse, C.; Crippa, M.; et al. Global Anthropogenic Emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service 2023, Simulations of Air Quality Forecasts and Reanalyses. Earth Syst. Sci. Data 2023, 2023, 1–45. [Google Scholar]
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.-P.; Super, I.; van der Gon, H.D. Copernicus Atmosphere Monitoring Service Regional Emissions Version 4.2 (CAMS-REG-v4.2) 2021, Copernicus Atmosphere Monitoring Service; ECCAD: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar] [CrossRef]
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.-P.; Super, I.; van der Gon, H.D. CAMS-REG-v4: A state-of-the-art high-resolution European emission inventory for air quality modelling. Earth Syst. Sci. Data 2022, 14, 491–515. [Google Scholar] [CrossRef]
- Life Prepair 2023, Monitoring the Environmental Effects of Pollutants Reduction Measures Implemented by Air Quality Improvement Plans. Report Action D6, PM10 Chemical Composition and Source Apportionment on Special Stations. Available online: https://www.lifeprepair.eu/?smd_process_download=1&download_id=9494 (accessed on 2 July 2024).
- Scotto, F.; Bacco, D.; Lasagni, S.; Trentini, A.; Poluzzi, V.; Vecchi, R. A multi-year source apportionment of PM2.5 at multiple sites in the southern Po Valley (Italy). Atmos. Pollut. Res. 2021, 12, 101192. [Google Scholar] [CrossRef]
- NASA Worldview. 2019. Available online: https://worldview.earthdata.nasa.gov/?v=-14.44003408250736,31.04465552181413,37.46215471434639,56.80652319025247&l=Reference_Labels_15m(hidden),Reference_Features_15m(hidden),Coastlines_15m(hidden),VIIRS_SNPP_DayNightBand_ENCC,VIIRS_SNPP_CorrectedReflectance_TrueColor&lg=false&t=2019-06-26-T03%3A25%3A30Z (accessed on 2 September 2024).
Fuel | EC/TSP | OC/TSP | BC/PM2.5 |
---|---|---|---|
Gasoline | 29% | 40% | 17% |
Coal | 0.1% | 0.1% | 6% |
Diesel | 62% | 21% | 54% |
Refinery Gas | 7% | 75% | 15% |
Gasoil | 8% | 2% | 39% |
LPG | 7% | 75% | 7% |
Kerosene | 70% | 30% | 15% |
Biomass | 12% | 36% | 14% |
Natural Gas | 7% | 75% | 6% |
Fuel Oil | 5% | 1% | 34% |
Indicators | Variables | Data Source | Reference |
---|---|---|---|
Emissions | Annual emissions in t/year BC, EC, OC, LG, NH3, PM10, PM2.5 | LIFE PREPAIR EMITOOL | https://emitool.arpalombardia.it/home (accessed on 28 June 2024) |
Taxations (5×) | Number of taxpayers and income values (in euros) | Ministry of Economy and Finance | https://www1.finanze.gov.it/finanze/analisi_stat/public/index.php?tree=2020 (accessed on 2 July 2024) |
Municipality (8×) | Geographical and demographic characteristics of a municipality | Italian National Statistical Institute | https://www.istat.it/it/archivio/156224 (accessed on 25 July 2024) |
Heating Degree Days HDD 1× | Sum of daily differences between 20 °C and the municipal average temperatures | Italian Institute for Environmental Protection and Research | https://scia.isprambiente.it/ (accessed on 28 June 2024) |
Dwellings and Population (23×) | Residential building types and labor force employed in various economic activities | Italian National Statistical Institute | https://esploradati.censimentopopolazione.istat.it/databrowser/#/it/censtest/categories/SUB_MUN_DATA (accessed on 28 June 2024) |
Livestock (7×) | Number of heads: dairy and non-dairy cows, sows and other pigs, broilers, laying hens and other poultry | National Veterinary Informative System | https://www.vetinfo.it/j6_statistiche/#/ (accessed on 25 July 2024) |
LANDCOVER (44×) | Land coverage and land use spatial data | European Environment Agency | https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac (accessed on 28 June 2024) |
Occupation for Sector (78×) | Occupations employed within a specific sector of the economy | Italian National Statistical Institute | https://www.istat.it/it/archivio/16777 (accessed on 25 July 2024) |
Year | Macrosector | SO2 | NOx | NMVOC | NH3 |
---|---|---|---|---|---|
2013 | 1—Combustion in energy and transformation industries | 17.99% | 6.32% | 0.33% | 0.02% |
2—Non-industrial combustion plants | 6.69% | 9.33% | 10.59% | 0.37% | |
3—Combustion in manufacturing industry | 41.17% | 15.45% | 1.79% | 0.19% | |
4—Production processes | 20.67% | 2.60% | 8.59% | 0.10% | |
5—Fuel extraction and distribution | 0.00% | 0.05% | 4.46% | 0.00% | |
6-Solvent and other product use | 0.07% | 0.23% | 58.03% | 0.08% | |
7—Road transport | 0.52% | 50.25% | 13.56% | 1.12% | |
8—Other mobile sources and machinery | 9.83% | 13.50% | 1.65% | 0.00% | |
9—Waste treatment and disposal | 2.46% | 1.38% | 0.33% | 0.73% | |
10—Agriculture | 0.31% | 0.72% | 0.25% | 97.32% | |
11—Other sources and sinks | 0.28% | 0.18% | 0.42% | 0.08% | |
Totalfor the Po Basin (t/y) | 49,930 | 388,766 | 422,931 | 256,238 | |
2017 | 1—Combustion in energy and transformation industries | 15.46% | 6.95% | 0.41% | 0.04% |
2—Non-industrial combustion plants | 6.67% | 10.45% | 10.57% | 0.54% | |
3—Combustion in manufacturing industry | 48.35% | 15.54% | 2.28% | 0.22% | |
4—Production processes | 23.18% | 2.56% | 10.25% | 0.13% | |
5—Fuel extraction and distribution | 0.00% | 0.00% | 5.97% | 0.00% | |
6—Solvent and other product use | 0.06% | 0.25% | 54.30% | 0.02% | |
7—Road transport | 0.64% | 47.93% | 13.24% | 0.98% | |
8—Other mobile sources and machinery | 2.83% | 14.01% | 1.52% | 0.00% | |
9—Waste treatment and disposal | 1.85% | 1.20% | 0.31% | 0.73% | |
10—Agriculture | 0.36% | 0.74% | 0.30% | 97.21% | |
11—Other sources and sinks | 0.60% | 0.35% | 0.87% | 0.12% | |
Totalfor the Po Basin (t/y) | 39,666 | 340,615 | 353,477 | 254,661 | |
2019 | 1—Combustion in energy and transformation industries | 14.47% | 6.44% | 0.63% | 0.03% |
2—Non-industrial combustion plants | 7.03% | 9.71% | 8.37% | 1.75% | |
3—Combustion in manufacturing industry | 47.89% | 15.51% | 1.99% | 0.33% | |
4—Production processes | 22.51% | 2.30% | 10.58% | 0.12% | |
5—Fuel extraction and distribution | 0.00% | 0.00% | 6.57% | 0.00% | |
6—Solvent and other product use | 0.03% | 0.07% | 59.83% | 0.01% | |
7—Road transport | 0.69% | 49.23% | 9.34% | 0.93% | |
8—Other mobile sources and machinery | 2.56% | 13.90% | 1.33% | 0.00% | |
9—Waste treatment and disposal | 3.68% | 1.60% | 0.28% | 0.40% | |
10—Agriculture | 0.48% | 0.92% | 0.30% | 96.29% | |
11—Other sources and sinks | 0.65% | 0.34% | 0.78% | 0.13% | |
Totalfor the Po Basin (t/y) | 32,535 | 307,462 | 351,610 | 240,918 |
Year | Macrosector | BC | EC | LG | OC | PM10 | PM2.5 |
---|---|---|---|---|---|---|---|
2013 | 1—Combustion in energy and transformation industries | 0.38% | 0.42% | 0.31% | 0.87% | 0.62% | 0.60% |
2—Non-industrial combustion plants | 43.68% | 45.26% | 93.35% | 79.87% | 56.59% | 63.90% | |
3—Combustion in manufacturing industry | 4.19% | 2.89% | 0.94% | 2.99% | 4.15% | 3.74% | |
4—Production processes | 0.02% | 0.01% | 0.00% | 0.02% | 2.87% | 1.97% | |
6—Solvent and other product use | 0.00% | 0.00% | 0.00% | 0.00% | 4.88% | 5.06% | |
7—Road transport | 34.73% | 40.04% | 0.00% | 8.54% | 19.97% | 14.71% | |
8—Other mobile sources and machinery | 14.54% | 7.69% | 0.00% | 2.09% | 3.72% | 4.17% | |
9—Waste treatment and disposal | 0.09% | 0.05% | 0.00% | 0.03% | 0.08% | 0.09% | |
10—Agriculture | 0.66% | 1.49% | 2.19% | 1.86% | 3.99% | 2.53% | |
11—Other sources and sinks | 1.71% | 2.16% | 3.21% | 3.72% | 3.12% | 3.23% | |
Totalfor the Po Basin (t/y) | 11,445 | 12,257 | 2501 | 29,365 | 79,121 | 69,119 | |
2017 | 1—Combustion in energy and transformation industries | 0.50% | 0.57% | 0.45% | 0.98% | 0.69% | 0.72% |
2—Non-industrial combustion plants | 46.28% | 46.78% | 90.71% | 78.08% | 56.53% | 64.76% | |
3—Combustion in manufacturing industry | 4.60% | 3.53% | 0.97% | 3.39% | 4.14% | 3.94% | |
4—Production processes | 0.04% | 0.00% | 0.00% | 0.02% | 3.13% | 2.24% | |
6—Solvent and other product use | 0.00% | 0.00% | 0.00% | 0.00% | 3.34% | 3.32% | |
7—Road transport | 29.91% | 35.45% | 0.00% | 7.66% | 18.87% | 13.03% | |
8—Other mobile sources and machinery | 14.88% | 7.85% | 0.00% | 2.01% | 3.49% | 3.72% | |
9—Waste treatment and disposal | 0.10% | 0.05% | 0.01% | 0.03% | 0.08% | 0.09% | |
10—Agriculture | 0.78% | 1.71% | 2.34% | 2.00% | 4.73% | 3.05% | |
11—Other sources and sinks | 2.90% | 4.04% | 5.52% | 5.84% | 5.00% | 5.12% | |
Totalfor the Po Basin (t/y) | 9257 | 10,115 | 2224 | 25,977 | 68,622 | 59,096 | |
2019 | 1—Combustion in energy and transformation industries | 0.53% | 0.71% | 0.40% | 1.22% | 0.70% | 0.81% |
2—Non-industrial combustion plants | 47.53% | 51.47% | 90.83% | 78.77% | 54.98% | 64.90% | |
3—Combustion in manufacturing industry | 3.99% | 3.23% | 0.75% | 3.03% | 3.49% | 3.51% | |
4—Production processes | 0.02% | 0.00% | 0.00% | 0.02% | 2.93% | 2.24% | |
6—Solvent and other product use | 0.00% | 0.00% | 0.00% | 0.00% | 2.78% | 2.94% | |
7—Road transport | 26.83% | 26.94% | 0.00% | 6.43% | 21.87% | 13.10% | |
8—Other mobile sources and machinery | 17.19% | 10.25% | 0.00% | 2.23% | 3.53% | 4.27% | |
9—Waste treatment and disposal | 0.70% | 0.73% | 0.74% | 0.69% | 0.86% | 1.00% | |
10—Agriculture | 0.96% | 2.24% | 2.60% | 2.23% | 4.93% | 3.42% | |
11—Other sources and sinks | 2.24% | 4.42% | 4.67% | 5.38% | 3.93% | 3.82% | |
Totalfor the Po Basin (t/y) | 7797 | 8038 | 2076 | 24,192 | 65,987 | 53,726 |
Type | PM10 | PM2.5 | BC | EC | OC | %BC/PM10 | %EC/PM10 | %OC/PM10 | |
---|---|---|---|---|---|---|---|---|---|
t year−1 | t year−1 | t year−1 | t year−1 | t year−1 | |||||
Diesel | Passenger cars—Highways | 232 | 232 | 135 | 156 | 44 | 58% | 68% | 19% |
Passenger cars—Extra urban | 329 | 329 | 191 | 222 | 63 | 58% | 68% | 19% | |
Passenger cars—Urban | 644 | 644 | 374 | 435 | 123 | 58% | 68% | 19% | |
Light duty vehicles < 3.5 t—Highways | 199 | 199 | 116 | 134 | 38 | 58% | 68% | 19% | |
Light duty vehicles < 3.5 t—Extra urban | 114 | 114 | 66 | 77 | 22 | 58% | 68% | 19% | |
Light duty vehicles < 3.5 t—urban | 319 | 319 | 186 | 216 | 61 | 58% | 68% | 19% | |
Heavy duty vehicles > 3.5 t and buses—Highways | 402 | 402 | 204 | 242 | 88 | 51% | 60% | 22% | |
Heavy duty vehicles > 3.5 t and buses—Extra urban | 333 | 333 | 170 | 201 | 73 | 51% | 60% | 22% | |
Heavy duty vehicles > 3.5 t and buses—Urban | 361 | 361 | 184 | 218 | 79 | 51% | 60% | 22% | |
Mopeds (<50 cm3)—Urban | 2.8 | 2.8 | 1.6 | 1.8 | 0.6 | 57% | 62% | 21% | |
Railways, airports, shipping, other transports | 322 | 315 | 182 | 153 | 81 | 57% | 47% | 25% | |
Total | 3257 | 3250 | 1809 | 2057 | 672 | 56% | 63% | 21% | |
Biomass combustion | Stove burning wood | 18,467 | 17,794 | 1843 | 2389 | 9684 | 10% | 13% | 52% |
Stove burning pellet | 1092 | 1085 | 165 | 116 | 304 | 15% | 11% | 28% | |
Closed fireplace burning wood | 5590 | 5388 | 871 | 588 | 2942 | 16% | 11% | 53% | |
Closed fireplace burning pellet | 69 | 68 | 10 | 7.1 | 18 | 15% | 10% | 26% | |
Traditional open fireplace | 4060 | 3905 | 277 | 340 | 2339 | 7% | 8% | 58% | |
Boiler < 50 MW—industrial combustion | 843 | 826 | 235 | 198 | 151 | 28% | 23% | 18% | |
Residential boiler burning wood | 802 | 785 | 114 | 143 | 393 | 14% | 18% | 49% | |
Residential boiler burning pellet | 118 | 117 | 18 | 12 | 31 | 15% | 10% | 26% | |
Boiler < 50 MW—district heating | 169 | 164 | 25 | 35 | 79 | 15% | 21% | 47% | |
Boiler >=50 e < 300 MW—Industrial combustion | 5.4 | 5.3 | 1.5 | 1.3 | 2.3 | 27% | 24% | 42% | |
Other (Pizza ovens, kitchens, etc.) | 5864 | 5510 | 392 | 505 | 3239 | 7% | 9% | 55% | |
Total | 37,080 | 35,649 | 3951 | 4336 | 19,182 | 11% | 12% | 52% | |
Other combustions | Gasoline and diesel—off road | 1712 | 1712 | 995 | 633 | 446 | 58% | 37% | 26% |
On field burning of stubble, straw and other agricultural wastes | 1390 | 1301 | 117 | 232 | 695 | 8% | 17% | 50% | |
Coal | 26 | 12 | 0.4 | 0.01 | 0.01 | 2% | 0% | 0% | |
Fuel oil | 35 | 31 | 17 | 2.2 | 0.4 | 48% | 6% | 1% | |
LPG | 21 | 21 | 1.4 | 1.5 | 16 | 7% | 7% | 75% | |
Forest fires | 1256 | 1028 | 93 | 194 | 581 | 7% | 15% | 46% | |
Combustions with contact (cement, foundries, etc.) | 861 | 486 | 14 | 15 | 139 | 2% | 2% | 16% | |
Fireworks | 689 | 376 | 79 | 158 | 332 | 11% | 23% | 48% | |
Gasoline—road transport | 351 | 351 | 71 | 93 | 150 | 20% | 27% | 43% | |
Natural gas | 815 | 806 | 34 | 65 | 692 | 4% | 8% | 85% | |
Tobacco | 648 | 648 | 3.2 | 3.2 | 389 | 1% | 0% | 60% | |
Gas and naphta in oil refineries | 57 | 57 | 8.6 | 4.0 | 43 | 15% | 7% | 75% | |
Residential and industrial gas oil | 121 | 121 | 30 | 29 | 8.8 | 25% | 24% | 7% | |
Waste incineration | 28 | 27 | 2.7 | 2.0 | 6.1 | 10% | 7% | 22% | |
Minor combustions processes | 50 | 33 | 4.7 | 4.1 | 16 | 9% | 8% | 31% | |
Total | 8060 | 7009 | 1471 | 1436 | 3513 | 18% | 18% | 44% | |
Other sources | Non exhaust emissions from road vehicles | 6733 | 3648 | 363 | 135 | 779 | 5% | 2% | 12% |
Industrial processes | 1935 | 1205 | 1.8 | 0.1 | 4.0 | 0% | 0% | 0% | |
Total | 8668 | 4852 | 365 | 135 | 783 | 4% | 2% | 9% | |
Other TSP emissions | 8921 | 2965 | 200 | 74 | 41 | 2% | 1% | 0% | |
Total | 65,987 | 53,726 | 7797 | 8038 | 24,192 | 12% | 12% | 37% |
Year | Area | Per Capita Emissions (kg/Inhabit/y) | Emission Density (kg/km2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BC | EC | LG | OC | PM10 | PM2.5 | BC | EC | LG | OC | PM10 | PM2.5 | ||
2013 | EU-27 | 0.51 | - | - | - | 4.66 | 3.23 | 60.78 | - | - | - | 556.9 | 385.8 |
Italy | 0.44 | - | - | - | 3.99 | 2.98 | 88.8 | - | - | - | 797.4 | 594.9 | |
Po Basin | 0.44 | 0.47 | 0.096 | 1.14 | 3.06 | 2.68 | 99.8 | 106.9 | 21.8 | 256.1 | 690 | 602.7 | |
2017 | EU-27 | 0.42 | - | - | - | 4.2 | 2.8 | 50.72 | - | - | - | 507.9 | 338.4 |
Italy | 0.36 | - | - | - | 3.91 | 2.81 | 73.3 | - | - | - | 783.2 | 562.6 | |
Po Basin | 0.35 | 0.39 | 0.085 | 0.99 | 2.62 | 2.26 | 80.7 | 88.2 | 19.4 | 226.5 | 598.4 | 515.3 | |
2019 | EU-27 | 0.44 | - | - | - | 4.64 | 3.07 | 46.84 | - | - | - | 491.2 | 324.9 |
Italy | 0.33 | - | - | - | 3.59 | 2.52 | 66 | - | - | - | 710.1 | 498.9 | |
Po Basin | 0.3 | 0.31 | 0.08 | 0.92 | 2.52 | 2.05 | 68 | 70.1 | 18.1 | 210.9 | 575.4 | 468.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marongiu, A.; Distefano, G.G.; Moretti, M.; Petrosino, F.; Fossati, G.; Collalto, A.G.; Angelino, E. Machine Learning Approach for Local Atmospheric Emission Predictions. Air 2024, 2, 380-401. https://doi.org/10.3390/air2040022
Marongiu A, Distefano GG, Moretti M, Petrosino F, Fossati G, Collalto AG, Angelino E. Machine Learning Approach for Local Atmospheric Emission Predictions. Air. 2024; 2(4):380-401. https://doi.org/10.3390/air2040022
Chicago/Turabian StyleMarongiu, Alessandro, Gabriele Giuseppe Distefano, Marco Moretti, Federico Petrosino, Giuseppe Fossati, Anna Gilia Collalto, and Elisabetta Angelino. 2024. "Machine Learning Approach for Local Atmospheric Emission Predictions" Air 2, no. 4: 380-401. https://doi.org/10.3390/air2040022
APA StyleMarongiu, A., Distefano, G. G., Moretti, M., Petrosino, F., Fossati, G., Collalto, A. G., & Angelino, E. (2024). Machine Learning Approach for Local Atmospheric Emission Predictions. Air, 2(4), 380-401. https://doi.org/10.3390/air2040022