Root Penetration Is Associated with Root Diameter and Root Growth Rate in Tropical Forage Grasses
Abstract
1. Introduction
2. Materials and Methods
2.1. Root Penetration
2.2. Root Diameter
2.3. Vertical Root Growth Rate
2.4. Statistical Analyses
3. Results
3.1. Root Penetration
3.2. Species Traits
3.3. Correlations Between Species Traits and Root Penetration
4. Discussion
4.1. Root Diameter
4.2. Shoot Mass
4.3. Vertical Root Growth Rate
4.4. Fibrous Roots
4.5. Species Comparison
4.6. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pennock, D.; McKenzie, N.; Montanarella, L. Status of the World’s Soil Resources. In Technical Summary; FAO: Rome, Italy, 2015. [Google Scholar]
- Jin, K.; Shen, J.; Ashton, R.W.; Dodd, I.C.; Parry, M.A.J.; Whalley, W.R. How do roots elongate in a structured soil? J. Exp. Bot. 2013, 64, 4761–4777. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.M.; Strock, C.F.; Hanlon, M.T.; Vanhees, D.J.; Perkins, A.C.; Ajmera, I.B.; Sidhu, J.S.; Mooney, S.J.; Brown, K.M.; Lynch, J.P. Multiseriate cortical sclerenchyma enhance root penetration in compacted soils. Proc. Natl. Acad. Sci. USA 2021, 118, e2012087118. [Google Scholar] [CrossRef] [PubMed]
- Philp, J.N.M.; Vance, W.; Bell, R.W.; Chhay, T.; Boyd, D.; Phimphachanhvongsod, V.; Denton, M.D. Forage options to sustainably intensify smallholder farming systems on tropical sandy soils. A review. Agron. Sustain. Dev. 2019, 39, 30. [Google Scholar] [CrossRef]
- Kato, Y.; Abe, J.; Kamoshita, A.; Yamagishi, J. Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 2006, 287, 117–129. [Google Scholar] [CrossRef]
- Clark, L.J.; Ferraris, S.; Price, A.H.; Whalley, W.R. A gradual rather than abrupt increase in soil strength gives better root penetration of strong layers. Plant Soil 2008, 307, 235–242. [Google Scholar] [CrossRef]
- Kubo, K.; Jitsuyama, Y.; Iwama, K.; Hasegawa, T.; Watanabe, N. Genotypic difference in root penetration ability by durum wheat (Triticum turgidum L. var. durum) evaluated by a pot with paraffin-Vaseline discs. Plant Soil 2004, 262, 169–177. [Google Scholar] [CrossRef]
- Botwright Acuña, T.L.; Pasuquin, E.; Wade, L.J. Genotypic differences in root penetration ability of wheat through thin wax layers in contrasting water regimes and in the field. Plant Soil 2007, 301, 135–149. [Google Scholar] [CrossRef]
- Chimungu, J.G.; Loades, K.W.; Lynch, J.P. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays). J. Exp. Bot. 2015, 66, 3151–3162. [Google Scholar] [CrossRef]
- Perkons, U.; Kautz, T.; Uteau, D.; Peth, S.; Geier, V.; Thomas, K.; Lütke Holz, K.; Athmann, M.; Pude, R.; Köpke, U. Root-length densities of various annual crops following crops with contrasting root systems. Soil Tillage Res. 2014, 137, 50–57. [Google Scholar] [CrossRef]
- Liu, B.; He, J.; Zeng, F.; Lei, J.; Arndt, S.K. Life span and structure of ephemeral root modules of different functional groups from a desert system. New Phytol. 2016, 211, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.N.; Miller, S.; Moore, G.A.; Hackney, B.F.; Boschma, S.P.; Reed, K.F.M.; Mitchell, M.; Albertsen, T.O.; Clark, S.; Craig, A.D.; et al. Field evaluation of perennial grasses and herbs in southern Australia. 2. Persistence, root characteristics and summer activity. Aust. J. Exp. Agric. 2008, 48, 424–435. [Google Scholar] [CrossRef]
- Acuña, C.A.; Sinclair, T.R.; Mackowiak, C.L.; Blount, A.R.; Quesenberry, K.H.; Hanna, W.W. Potential root depth development and nitrogen uptake by tetraploid bahiagrass hybrids. Plant Soil 2010, 334, 491–499. [Google Scholar] [CrossRef]
- Fuentealba, M.P.; Zhang, J.; Kenworthy, K.E.; Erickson, J.E.; Kruse, J.; Trenholm, L.E. Root development and profile characteristics of bermudagrass and zoysiagrass. HortScience 2015, 50, 1429–1434. [Google Scholar] [CrossRef]
- Huot, C.; Zhou, Y.; Philp, J.N.M.; Denton, M.D. Root depth development in tropical perennial forage grasses is associated with root angle, root diameter and leaf area. Plant Soil 2020, 456, 145–158. [Google Scholar] [CrossRef]
- Clark, L.J.; Price, A.H.; Steele, K.A.; Whalley, W.R. Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Funct. Plant Biol. 2008, 35, 1163–1171. [Google Scholar] [CrossRef]
- Zhou, Y.; Hooper, P.; Coventry, D.; Denton, M.D. Strategic nitrogen supply alters canopy development and improves nitrogen use efficiency in dryland wheat. Agron. J. 2017, 109, 1072–1081. [Google Scholar] [CrossRef]
- Bengough, A.G.; Loades, K.; McKenzie, B.M. Root hairs aid soil penetration by anchoring the root surface to pore walls. J. Exp. Bot. 2016, 67, 1071–1078. [Google Scholar] [CrossRef]
- Vanhees, D.J.; Loades, K.W.; Bengough, A.G.; Mooney, S.J.; Lynch, J.P. The ability of maize roots to grow through compacted soil is not dependent on the amount of roots formed. Field Crops Res. 2021, 264, 108013. [Google Scholar] [CrossRef]
- Vanhees, D.J.; Schneider, H.M.; Sidhu, J.S.; Loades, K.W.; Bengough, A.G.; Bennett, M.J.; Pandey, B.K.; Brown, K.M.; Mooney, S.J.; Lynch, J.P. Soil penetration by maize roots is negatively related to ethylene-induced thickening. Plant Cell Environ. 2022, 45, 789–804. [Google Scholar] [CrossRef]
- Huang, G.; Kilic, A.; Karady, M.; Zhang, J.; Mehra, P.; Song, X.; Sturrock, C.J.; Zhu, W.; Qin, H.; Hartman, S. Ethylene inhibits rice root elongation in compacted soil via ABA-and auxin-mediated mechanisms. Proc. Natl. Acad. Sci. USA 2022, 119, e2201072119. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, A.G.; Jervis, G.; Xu, J.; Topping, J.F.; Lindsey, K. Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. New Phytol. 2021, 231, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Kirby, J.M.; Bengough, A.G. Influence of soil strength on root growth: Experiments and analysis using a critical-state model. Eur. J. Soil Sci. 2002, 53, 119–127. [Google Scholar] [CrossRef]
- Whalley, W.; Bengough, A.; Dexter, A. Water stress induced by PEG decreases the maximum growth pressure of the roots of pea seedlings. J. Exp. Bot. 1998, 49, 1689–1694. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Goodger, J.Q. Chemical root to shoot signaling under drought. Trends Plant Sci. 2008, 13, 281–287. [Google Scholar] [CrossRef]
- Price, A.H.; Steele, K.A.; Moore, B.J.; Jones, R.G.W. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: II. Mapping quantitative trait loci for root morphology and distribution. Field Crops Res. 2002, 76, 25–43. [Google Scholar] [CrossRef]
- Zhou, Y.; Lambrides, C.; Fukai, S. Drought resistance of C4 grasses under field conditions: Genetic variation among a large number of bermudagrass (Cynodon spp.) ecotypes collected from different climatic zones. J. Agron. Crop Sci. 2013, 199, 253–263. [Google Scholar] [CrossRef]
- Alemu, A.; Åstrand, J.; Montesinos-Lopez, O.A.; y Sanchez, J.I.; Fernandez-Gonzalez, J.; Tadesse, W.; Vetukuri, R.R.; Carlsson, A.S.; Ceplitis, A.; Crossa, J. Genomic selection in plant breeding: Key factors shaping two decades of progress. Mol. Plant 2024, 17, 552–578. [Google Scholar] [CrossRef] [PubMed]
- Koeser, A.K.; Roberts, J.W.; Miesbauer, J.W.; Lopes, A.B.; Kling, G.J.; Lo, M.; Morgenroth, J. Testing the accuracy of imaging software for measuring tree root volumes. Urban For. Urban Green. 2016, 18, 95–99. [Google Scholar] [CrossRef]
- Hettiaratchi, D. Soil compaction and plant root growth. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1990, 329, 343–355. [Google Scholar] [CrossRef]
- Loades, K.W.; Bengough, A.G.; Bransby, M.F.; Hallett, P.D. Biomechanics of nodal, seminal and lateral roots of barley: Effects of diameter, waterlogging and mechanical impedance. Plant Soil 2013, 370, 407–418. [Google Scholar] [CrossRef]
- Croser, C.; Bengough, A.G.; Pritchard, J. The effect of mechanical impedance on root growth in pea (Pisum sativum). II. Cell expansion and wall rheology during recovery. Physiol. Plant. 2000, 109, 150–159. [Google Scholar] [CrossRef]
- Ubeda-Tomás, S.; Beemster, G.T.S.; Bennett, M.J. Hormonal regulation of root growth: Integrating local activities into global behaviour. Trends Plant Sci. 2012, 17, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.J.; Whalley, W.; Dexter, A.; Barraclough, P.; Leigh, R. Complete mechanical impedance increases the turgor of cells in the apex of pea roots. Plant Cell Environ. 1996, 19, 1099–1102. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Whalley, W.R. Physical effects of soil drying on roots and crop growth. J. Exp. Bot. 2009, 60, 2845–2857. [Google Scholar] [CrossRef] [PubMed]
- Dodd, I.C. Root-To-Shoot Signalling: Assessing The Roles of ‘Up’ in the up and down World of Long-Distance Signalling in Planta. Plant Soil 2005, 274, 251–270. [Google Scholar] [CrossRef]
- Haling, R.E.; Brown, L.K.; Bengough, A.G.; Young, I.M.; Hallett, P.D.; White, P.J.; George, T.S. Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength. J. Exp. Bot. 2013, 64, 3711–3721. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Penetration of cover crop roots through compacted soils. Plant Soil 2010, 331, 31–43. [Google Scholar] [CrossRef]
- Sharma, P.K.; Pantuwan, G.; Ingram, K.; De Datta, S. Rainfed lowland rice roots: Soil and hydrological effects. In Rice Roots: Nutrient and Water Use; IRRI: Manila, Philippines, 1994; Volume 55. [Google Scholar]
- Philp, J.N.M.; Cornish, P.S.; Te, K.S.H.; Bell, R.W.; Vance, W.; Lim, V.; Li, X.; Kamphayae, S.; Denton, M.D. Insufficient potassium and sulfur supply threaten the productivity of perennial forage grasses in smallholder farms on tropical sandy soils. Plant Soil 2021, 461, 617–630. [Google Scholar] [CrossRef]
Cocopeat Substrate | UC Mix | ||
---|---|---|---|
Ingredients | Quantity | Ingredients | Quantity |
Waikerie sand | 1.00 m3 | Waikerie sand | 0.56 m3 |
Coco peat blocks | 75.00 kg | Canadian peat moss | 0.44 m3 |
Dolomite lime | 0.90 kg | Hydrated lime | 0.80 kg |
Hydrated lime | 0.58 kg | Agriculture lime | 1.33 kg |
Agriculture lime | 2.50 kg | Osmocote Exact Mini 6 N + 3.5 P + 9.1 K + TE (from Fernland, Yandina, QLD 4561 Australia) | 3.00 kg |
Gypsum | 0.90 kg | ||
Superphosphate | 0.90 kg | ||
Iron sulphate | 2.25 kg | ||
Iron chelate | 0.15 kg | ||
Micromax Premium Trace Element Mix 0.2 B + 1.0 Cu +15 Fe + 2.5 Mn + 0.04 Mo + 1.0 Zn (from Fernland, Yandina, QLD 4561 Australia) | 0.90 kg | ||
Calcium nitrate | 2.25 kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huot, C.; Philp, J.N.M.; Zhou, Y.; Denton, M.D. Root Penetration Is Associated with Root Diameter and Root Growth Rate in Tropical Forage Grasses. Grasses 2025, 4, 4. https://doi.org/10.3390/grasses4010004
Huot C, Philp JNM, Zhou Y, Denton MD. Root Penetration Is Associated with Root Diameter and Root Growth Rate in Tropical Forage Grasses. Grasses. 2025; 4(1):4. https://doi.org/10.3390/grasses4010004
Chicago/Turabian StyleHuot, Chanthy, Joshua N. M. Philp, Yi Zhou, and Matthew D. Denton. 2025. "Root Penetration Is Associated with Root Diameter and Root Growth Rate in Tropical Forage Grasses" Grasses 4, no. 1: 4. https://doi.org/10.3390/grasses4010004
APA StyleHuot, C., Philp, J. N. M., Zhou, Y., & Denton, M. D. (2025). Root Penetration Is Associated with Root Diameter and Root Growth Rate in Tropical Forage Grasses. Grasses, 4(1), 4. https://doi.org/10.3390/grasses4010004