Accounting for Diurnal Variation in Enteric Methane Emissions from Growing Steers Under Grazing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design
2.2.1. Acclimation Period: Animals, Feed Management, and Experimental Conditions
2.2.2. Measurement Period: Herd Management, Pasture Management, and Experimental Conditions
2.2.3. Gas Flux Measurements
2.3. Calculation and Statistical Analysis
2.3.1. Data Preprocessing Methods
2.3.2. Gas Flux Variability
3. Results
3.1. Data Preprocessing Method Comparison
3.2. Test Period Length Averaging Evaluation
3.3. Gas Flux and AHCS Visitation Variability in Different Production Environments
4. Discussion
4.1. Importance of Accounting for Diurnal Variation Across Production Settings
4.2. Importance of Accounting for Diurnal Variation Across Experimental Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pelton, R.E.O.; Kazanski, C.E.; Keerthi, S.; Racette, K.A.; Gennet, S.; Springer, N.; Yacobson, E.; Wironen, M.; Ray, D.; Johnson, K.; et al. Greenhouse gas emissions in US beef production can be reduced by up to 30% with the adoption of selected mitigation measures. Nat. Food 2024, 5, 787–797. [Google Scholar] [CrossRef]
- Hammond, K.J.; Crompton, L.A.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.R.; O’Kiely, P.; Kebreab, E.; Eugène, M.A.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Raynor, E.J.; Kutz, M.; Thompson, L.R.; Carvalho, P.H.V.; Place, S.E.; Stackhouse-Lawson, K.R. Impact of growth implants and low-level tannin supplementation on enteric emissions and nitrogen excretion in grazing steers. Transl. Anim. Sci. 2024, 8, txae115. [Google Scholar] [CrossRef]
- Schilling-Hazlett, A.; Raynor, E.J.; Thompson, L.; Velez, J.; Place, S.; Stackhouse-Lawson, K. On-Farm Methane Mitigation and Animal Health Assessment of a Commercially Available Tannin Supplement in Organic Dairy Heifers. Animals 2024, 14, 9. [Google Scholar] [CrossRef]
- Dressler, E.A.; Bormann, J.M.; Weaber, R.L.; Rolf, M.M. Use of methane production data for genetic prediction in beef cattle: A review. Transl. Anim. Sci. 2024, 8, txae014. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.d.J.; Swenson, M.; Place, S.E. Determination of gas flux and animal performance test duration of growing cattle in confined conditions. Transl. Anim. Sci. 2024, 8, txae056. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.d.J.; Carvalho, P.H.V.; Raynor, E.J.; Martins, E.C.; Souza, W.A.; Shadbolt, A.M.; Stackhouse-Lawson, K.R.; Place, S.E. Determination of gas flux of growing steers under intensive grazing conditions. Transl. Anim. Sci. 2024, 8, txae119. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Menezes, T.; Auvermann, B.; Derner, J.; Thoma, G.; Hales, K.; Johnson, K.; Leytem, A.; Place, S.; Plaut, J.; et al. Net zero initiative in U.S. beef and dairy systems: Integrative on-farm recommendations for greenhouse gas reduction. Environ. Res. Commun. 2024, 6, 101010. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.R.; Rowntree, J.E. Methane sources, quantification, and mitigation in grazing beef systems. Appl. Anim. Sci. 2020, 36, 556–573. [Google Scholar] [CrossRef]
- Della Rosa, M.; Jonker, A.; Waghorn, G. A review of technical variations and protocols used to measure methane emissions from ruminants using respiration chambers, SF6 tracer technique and GreenFeed, to facilitate global integration of published data. Anim. Feed Sci. Technol. 2021, 279, 115018. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Jonker, A.; Macdonald, K.A. Measuring methane from grazing dairy cows using GreenFeed. Anim. Prod. Sci. 2016, 56, 252–257. [Google Scholar] [CrossRef]
- Thompson, L.R.; Maciel, I.C.F.; Rodrigues, P.D.R.; Cassida, K.A.; Rowntree, J.E. Impact of forage diversity on forage productivity, nutritive value, beef cattle performance, and enteric methane emissions. J. Anim. Sci. 2021, 99, skab326. [Google Scholar] [CrossRef] [PubMed]
- Raynor, E.J.; Schilling-Hazlett, A.; Place, S.E.; Martinez, J.V.; Thompson, L.R.; Johnston, M.K.; Jorns, T.R.; Beck, M.R.; Kuehn, L.A.; Derner, J.D.; et al. Snapshot of Enteric Methane Emissions from Stocker Cattle Grazing Extensive Semiarid Rangelands. Rangel. Ecol. Manag. 2024, 93, 77–80. [Google Scholar] [CrossRef]
- Beck, M.R.; Thompson, L.R.; Proctor, J.A.; Reuter, R.R.; Gunter, S.A. Recommendations on visit duration and sample number requirements for an automated head chamber system. J. Anim. Sci. 2024, 102, skae158. [Google Scholar] [CrossRef] [PubMed]
- Manafiazar, G.; Zimmerman, S.; Basarab, J.A. Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed emissions monitoring system. Can. J. Anim. Sci. 2017, 97, 118–126. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Tamayao, P.; Rosser, C.; Terry, S.A.; Gruninger, R. Understanding variability and repeatability of enteric methane production in feedlot cattle. Front. Anim. Sci. 2022, 3, 1029094. [Google Scholar] [CrossRef]
- Gunter, S.A.; Beck, M.R. Measuring the respiratory gas exchange by grazing cattle using an automated, open-circuit gas quantification system. Transl. Anim. Sci. 2018, 2, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Dressler, E.A.; Bormann, J.M.; Weaber, R.L.; Rolf, M.M. Characterization of the number of spot samples required for quantification of gas fluxes and metabolic heat production from grazing beef cows using a GreenFeed. J. Anim. Sci. 2023, 101, skad176. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. Summary Report: 2007 National Resources Inventory; Natural Resources Conservation Service: Washington, DC, USA; Center for Survey Statistics and Methodology, Iowa State University: Ames, IA, USA, 2009. [Google Scholar]
- Cullison, A. Effect of physical form of the ration on steer performance and certain rumen phenomena. J. Anim. Sci. 1961, 20, 478–483. [Google Scholar] [CrossRef]
- Gerrish, J. Management-Intensive Grazing: The Grassroots of Grass Farming; Green Park Press: Hyde Park, VT, USA, 2004. [Google Scholar]
- Jonker, A.; Waghorn, G. Guidelines for Estimating Methane Emissions from Individual Ruminants Using: GreenFeed, ’sniffers’, Hand-Held Laser Detector and Portable Accumulation Chambers; Ministry for Primary Industries = Manatū Ahu Matua: Wellington, New Zealand, 2020. [Google Scholar]
- Velazco, J.; Mayer, D.; Zimmerman, S.; Hegarty, R. Use of short-term breath measures to estimate daily methane production by cattle. Animal 2016, 10, 25–33. [Google Scholar] [CrossRef]
- Hegarty, R.S. Applicability of short-term emission measurements for on-farm quantification of enteric methane. Animal 2013, 7 (Suppl. S2), 401–408. [Google Scholar] [CrossRef] [PubMed]
- Hales, K.E.; Cole, N.A. Hourly methane production in finishing steers fed at different levels of dry matter intake. J. Anim. Sci. 2017, 95, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Gunter, S.; Bradford, J. Influence of sampling time on carbon dioxide and methane emissions by grazing cattle. Proc. West. Sect. Am. Soc. Anim. Sci. 2015, 66, 201–203. [Google Scholar]
- Hammond, K.; Humphries, D.; Crompton, L.; Kirton, P.; Green, C.; Reynolds, C. Methane emissions from growing dairy heifers estimated using an automated head chamber (GreenFeed) compared to respiration chambers or SF6 techniques. Adv. Anim. Biosci. 2013, 4, 391. [Google Scholar]
- Vargas, J.; Ungerfeld, E.; Muñoz, C.; DiLorenzo, N. Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems. Animals 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Brennan, J.R.; Parsons, I.L.; Harrison, M.; Menendez, H.M., III. Development of an application programming interface to automate downloading and processing of precision livestock data. Transl. Anim. Sci. 2024, 8, txae092. [Google Scholar] [CrossRef]
- Shawver, C.J.; Ippolito, J.A.; Brummer, J.E.; Ahola, J.K.; Rhoades, R.D. Soil health changes following transition from an annual cropping to perennial management-intensive grazing agroecosystem. Agrosystems Geosci. Environ. 2021, 4, e20181. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef] [PubMed]
- Arthur, P.F.; Barchia, I.M.; Weber, C.; Bird-Gardiner, T.; Donoghue, K.A.; Herd, R.M.; Hegarty, R.S. Optimizing test procedures for estimating daily methane and carbon dioxide emissions in cattle using short-term breath measures. J. Anim. Sci. 2017, 95, 645–656. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev.-Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Alemu, A.W.; Schreck, A.L.; Booker, C.W.; MCGinn, S.M.; Pekrul, L.K.D.; Kindermann, M.; Beauchemin, K.A. Use of 3-nitrooxypropanol in a commercial feedlot to decrease enteric methane emissions from cattle fed a corn-based finishing diet. J. Anim. Sci. 2021, 99, skaa394. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Beck, M.R.; Thompson, L.R.; Williams, G.D.; Place, S.E.; Gunter, S.A.; Reuter, R.R. Fat supplements differing in physical form improve performance but divergently influence methane emissions of grazing beef cattle. Anim. Feed. Sci. Technol. 2019, 254, 114210. [Google Scholar] [CrossRef]
- Raynor, E.J.; Derner, J.D.; Soder, K.J.; Augustine, D.J. Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures. Appl. Anim. Behav. Sci. 2021, 242, 105402. [Google Scholar] [CrossRef]
- Gregorini, P. Diurnal grazing pattern: Its physiological basis and strategic management. Anim. Prod. Sci. 2012, 52, 416–430. [Google Scholar] [CrossRef]
- Archimède, H.; Eugène, M.; Magdeleine, C.M.; Boval, M.; Martin, C.; Morgavi, D.; Lecomte, P.; Doreau, M. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 2011, 166, 59–64. [Google Scholar] [CrossRef]
- Hammond, K.J.; Waghorn, G.C.; Hegarty, R.S. The GreenFeed system for measurement of enteric methane emission from cattle. Anim. Prod. Sci. 2016, 56, 181–189. [Google Scholar] [CrossRef]
- Jonker, A.; Molano, G.; Antwi, C.; Waghorn, G. Feeding lucerne silage to beef cattle at three allowances and four feeding frequencies affects circadian patterns of methane emissions, but not emissions per unit of intake. Anim. Prod. Sci. 2014, 54, 1350–1353. [Google Scholar] [CrossRef]
- Beck, M.R.; Proctor, J.A.; Kasuske, Z.; Smith, J.K.; Gouvêa, V.N.; Lockard, C.L.; Min, B.; Brauer, D. Effects of replacing steam-flaked corn with increasing levels of malted barley in a finishing ration on feed intake, growth performance, and enteric methane emissions of beef steers. Appl. Anim. Sci. 2023, 39, 525–534. [Google Scholar] [CrossRef]
- Harrison, M. GreenFeed Manual; C-Lock, Inc.: Rapid City, SD, USA, 2024; pp. 46–49. [Google Scholar]
Bin (Hr) * | Averaging Period (d) ^ | Arithmetic Averaging | Time-Bin Averaging | r (Anova p) | |||
---|---|---|---|---|---|---|---|
CH4 (g d−1) | CO2 (g d−1) | CH4 (g d−1) | CO2 (g d−1) | CH4 (g d−1) | CO2 (g d−1) | ||
2 | 1 | 222.76 ± 57.06 | 7763.73 ± 1362.18 | 221.39 ± 62.51 | 7716.33 ± 1471.96 | 0.98 (0.64) | 0.99 (0.68) |
3 | 221.72 ± 46.86 | 7737.50 ± 1163.88 | 221.27 ± 60.96 | 7726.07 ± 1437.70 | 0.98 (0.78) | 0.99 (0.84) | |
7 | 220.40 ± 38.71 | 7692.08 ± 1039.65 | 221.15 ± 58.42 | 7705.87 ± 1383.14 | 0.97 (0.99) | 0.99 (0.99) | |
14 | 223.22 ± 33.09 | 7754.92 ± 919.03 | 221.99 ± 54.73 | 7728.54 ± 1283.93 | 0.96 (0.61) | 0.98 (0.73) | |
4 | 1 | 222.76 ± 57.06 | 7763.73 ± 1362.18 | 221.51 ± 62.48 | 7721.83 ± 1470.95 | 0.98 (0.67) | 0.99 (0.72) |
3 | 221.72 ± 46.86 | 7737.50 ± 1163.88 | 220.76 ± 58.76 | 7715.28 ± 1385.10 | 0.96 (0.69) | 0.98 (0.78) | |
7 | 220.40 ± 38.71 | 7692.08 ± 1039.65 | 219.68 ± 54.32 | 7676.69 ± 1298.19 | 0.94 (0.72) | 0.99 (0.85) | |
14 | 223.22 ± 33.09 | 7754.92 ± 919.03 | 221.09 ± 49.91 | 7704.21 ± 1197.23 | 0.91 (0.46) | 0.97 (0.60) | |
12 | 1 | 222.76 ± 57.06 | 7763.73 ± 1362.18 | 221.82 ± 61.02 | 7751.15 ± 1362.18 | 0.99 (0.74) | 0.99 (0.85) |
3 | 221.72 ± 46.86 | 7737.50 ± 1163.88 | 220.89 ± 54.19 | 7744.12 ± 1163.88 | 0.97 (0.75) | 0.99 (0.90) | |
7 | 220.40 ± 38.71 | 7692.08 ± 1039.65 | 218.72 ± 47.49 | 7691.01 ± 1039.65 | 0.98 (0.66) | 0.99 (0.84) | |
14 | 223.22 ± 33.09 | 7754.92 ± 919.03 | 221.89 ± 40.86 | 7752.42 ± 919.03 | 0.97 (0.68) | 0.99 (0.81) |
Group | Metric | Measurement Period | Test Period Length Interval | |||||
---|---|---|---|---|---|---|---|---|
Location | # AHCS | Dates; days | 1-d | 3-d | 7-d | 14-d | ||
1 (n = 50 hd) | Visits (n/d) | Confined | One | 6/13–7/5/2023; 23 | 1.83 ± 1.16; 1–6 | 3.51 ± 1.57; 3–16 | 6.59 ± 3.29; 4–31 | 12.25 ± 6.58; 5–45 |
1 | Pasture | Two | 7/8–8/21/2023; 33 | 1.85 ± 0.92; 1–6 | 3.20 ± 1.35; 1–13 | 4.93 ± 2.67; 1–18 | 6.75 ± 4.03; 1–25 | |
1 | Pasture | One | 8/23–10/16/2023; 55 | 1.61 ± 0.82; 1–6 | 3.19 ± 1.00; 1–13 | 6.79 ± 2.66; 1–25 | 12.62 ± 5.89; 1–43 | |
1 | %ind. with 5 of 6 time bins measured | Confined | One | 6/13–7/05/2023; 23 | 17 (34) | 37 (74) | 48 (96) | 50 (100) |
1 | Pasture | Two | 7/8–8/21/2023; 33 | 4 (8) | 21 (42) | 22 (44) | 23 (46) | |
1 | Pasture | One | 8/23–10/16/23; 55 | 5 (10) | 31 (62) | 35 (70) | 35 (70) | |
2 (n = 60 hd) | Visits (n/d) | Confined | One | 6/13–7/10/23; 28 | 2.15 ± 1.24; 1–6 | 4.36 ± 1.86; 1–17 | 9.78 ± 4.95; 1–31 | 17.83 ± 9.83; 1–47 |
2 | Pasture | Two | 7/31–8/6/23; 7 | 2.06 ± 1.15; 1–5 | 3.33 ± 2.04; 1–10 | 9.14 ± 7.06; 1–19 | - | |
2 | Pasture | One | 8/24–10/25/23; 59 | 1.69 ± 0.85; 1–6 | 3.56 ± 1.10; 2–13 | 7.16 ± 2.75; 2–20 | 11.76 ± 5.32; 2–34 | |
2 | %ind. with 5 of 6 time bins measured | Confined | One | 6/13–7/10/23; 28 | 16 (26.7) | 39 (65.0) | 40 (66.7) | 40 (66.7) |
2 | Pasture | Two | 7/31–8/6/23; 7 | 1 (1.6) | 3 (5.0) | 5 (8.3) | - | |
2 | Pasture | One | 8/24–10/25/23; 59 | 8 (13.3) | 32 (53.3) | 36 (60.0) | 36 (60.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raynor, E.J.; Carvalho, P.H.V.; Vargas, J.d.J.; Martins, E.C.; Souza, W.A.; Shadbolt, A.M.; Jannat, A.; Place, S.E.; Stackhouse-Lawson, K.R. Accounting for Diurnal Variation in Enteric Methane Emissions from Growing Steers Under Grazing Conditions. Grasses 2025, 4, 12. https://doi.org/10.3390/grasses4010012
Raynor EJ, Carvalho PHV, Vargas JdJ, Martins EC, Souza WA, Shadbolt AM, Jannat A, Place SE, Stackhouse-Lawson KR. Accounting for Diurnal Variation in Enteric Methane Emissions from Growing Steers Under Grazing Conditions. Grasses. 2025; 4(1):12. https://doi.org/10.3390/grasses4010012
Chicago/Turabian StyleRaynor, Edward J., Pedro H. V. Carvalho, Juan de J. Vargas, Edilane C. Martins, Willian A. Souza, Anna M. Shadbolt, Afrin Jannat, Sara E. Place, and Kimberly R. Stackhouse-Lawson. 2025. "Accounting for Diurnal Variation in Enteric Methane Emissions from Growing Steers Under Grazing Conditions" Grasses 4, no. 1: 12. https://doi.org/10.3390/grasses4010012
APA StyleRaynor, E. J., Carvalho, P. H. V., Vargas, J. d. J., Martins, E. C., Souza, W. A., Shadbolt, A. M., Jannat, A., Place, S. E., & Stackhouse-Lawson, K. R. (2025). Accounting for Diurnal Variation in Enteric Methane Emissions from Growing Steers Under Grazing Conditions. Grasses, 4(1), 12. https://doi.org/10.3390/grasses4010012