Production of Panicum maximum cv. Mombaça Under Fertilization Management and Ozonation of Irrigation Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Plant Material
2.2. Experimental Design and Execution
2.3. Experimental Evaluations
2.3.1. Morphogenic Characteristics
- -
- Number of emerging leaves (NEmL): Obtained at the end of the growth period, considering as emerging or expanding leaves those without an exposed ligule.
- -
- Number of expanded leaves (NExL): Obtained at the end of the growth period, representing the number of fully expanded leaves on each tiller, i.e., with an exposed ligule.
- -
- Number of live leaves (NLL): Obtained at the end of the growth period by summing the number of expanding and expanded leaves per tiller.
- -
- Leaf appearance rate (LAR, leaves tiller−1 day−1): Calculated by subtracting the number of leaves that emerged per tiller from the initial number of leaves, divided by the number of days in the evaluation period.
- -
- Leaf elongation rate (LER, cm tiller−1 day−1): Calculated by subtracting the initial from the final lengths of the leaves and dividing the result by the number of days in the evaluation, then multiplying by the number of tillers considered.
- -
- Stem elongation rate (SER, cm tiller−1 day−1): Calculated by subtracting the initial from the final lengths of the stems and dividing the result by the number of days in the evaluation, then multiplying by the number of tillers considered.
2.3.2. Agronomic Characteristics
2.4. Statistical Analysis
3. Results and Discussion
3.1. Water Consumption
3.2. Morphogenetic Analyses
3.3. Agronomic Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADD | Accumulated degree-days |
ANAVA | Analysis of variance |
Aw | Tropical Savanna climate with dry-winter |
CO(NH2)2 | Urea |
CRD | Completely randomized design |
CRRH | Center for Water Resources Reference |
D | Drained water |
DEA | Department of Agricultural Engineering |
DSB | Dry shoot biomass |
ETc | Crop evapotranspiration |
ETo | Reference evapotranspiration |
Fert. | Fertilization |
FSB | Fresh shoot biomass |
K2O | Potassium Oxide |
KCl | Potassium chloride |
LAR | Leaf appearance rate |
LDPE | Low-density polyethylene |
LER | Leaf elongation rate |
Mpot i | Pot mass on day i |
N | Nitrogen |
NEmL | Number of emerging leaves |
NExL | Number of expanded leaves |
NLL | Number of live leaves |
O3 | Ozone |
SER | Stem elongation rate |
UFV | Federal University of Viçosa |
Vw | Total volume of water applied |
WP | Water use productivity |
References
- Instituto Brasileiro de Geografia e Estatística (IBGE). Levantamento Sistemático da Produção Agrícola de 2022; IBGE: Rio de Janeiro, Brazil, 2023. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria.html (accessed on 20 December 2024).
- Enahoro, D.; D’Croz, D.M.; Mul, M.; Rich, K.M.; Robinson, T.P.; Thornton, P.; Staal, S.S. Supporting sustainable expansion of livestock production in South Asia and Sub-Saharan Africa: Scenario analysis of investment options. Glob. Food Secur. 2019, 20, 114–121. [Google Scholar] [CrossRef]
- Maja, M.M.; Ayano, S.F. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Oliveira, P.P.A.; Berndt, A.; Pedroso, A.F.; Alves, T.C.; Lemes, A.P.; Oliveira, B.A.; Pezzopane, J.R.M.; Rodrigues, P.H.M. Greenhouse gas balance and mitigation of pasture-based dairy production systems in the Brazilian Atlantic Forest Biome. Front. Vet. Sci. 2022, 9, 958751. [Google Scholar] [CrossRef]
- Wróbel, B.; Zielewicz, W.; Staniak, M. Challenges of pasture feeding systems—Opportunities and constraints. Agriculture 2023, 13, 974. [Google Scholar] [CrossRef]
- Robinson, S.; Petrick, M. Land access and feeding strategies in post-Soviet livestock husbandry: Evidence from a rangeland system in Kazakhstan. Agric. Syst. 2024, 219, 104011. [Google Scholar] [CrossRef]
- Vieira, D.L.M.; Sano, E.E.; Silva, T.R. A classification of cultivated pastures in the Brazilian Cerrado for sustainable intensification and savanna restoration. Ambio 2022, 51, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Labair, H.; Nemmich, S.; Charif, K.C.; Ramdani, N.; Nassour, K.; Reguig, M.; Tilmatine, A. Investigating the synergistic impact of ozonated water irrigation and organic fertilization on tomato growth. Emir. J. Food Agric. 2024, 36, 1–9. [Google Scholar] [CrossRef]
- Xu, J.P.; Yu, Y.C.; Zhang, T.; Ma, Q.; Yang, H.B. Effects of ozone water irrigation and spraying on physiological characteristics and gene expression of tomato seeds. Hortic. Res. 2021, 8, 180. [Google Scholar] [CrossRef]
- Raphael, D.O.; Akande, I.D.; Amodu, M.F.; Samuel, S.I.; Olotu, W.S. Inhibition potential of moringa root extract and ozonized water on biofilm growth in clogged drip irrigation system. In Proceedings of the 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 2–4 April 2024. [Google Scholar] [CrossRef]
- Rocha, M.O.; Miranda, A.G.S.; Silva, P.A.; Teixeira, A.S.; Cunha, F.F. Predicting the spatial distribution of water applied by subsurface drip in clay soil. Rev. Bras. Eng. Agric. Ambient. 2024, 28, e277102. [Google Scholar] [CrossRef]
- Graham, T.; Zhang, P.; Woyzbun, E.; Dixon, M. Response of hydroponic tomato to daily applications of aqueous ozone via drip irrigation. Sci. Hortic. 2011, 129, 464–471. [Google Scholar] [CrossRef]
- Pérez, J.C.D.; Deltsidis, A.; Jiménez, A.M.C. Oxygenation and ozonation of irrigation water and a soil microbial inoculant did not influence tomato plant growth and yield and soil microbiota. Int. J. Veg. Sci. 2023, 29, 473–480. [Google Scholar] [CrossRef]
- Das, P.P.; Dhara, S.; Samanta, N.S.; Purkait, M.K. Advancements on ozonation process for wastewater treatment: A comprehensive review. Chem. Eng. Process. 2024, 2, 109852. [Google Scholar] [CrossRef]
- Granados, S.N.; Piernas, A.B.M.; Ibáñez, G.R.; Bolaños, P.P.; Oller, I.; Malato, S.; Pérez, J.A.S.; Agüera, A.; López, M.I.P. Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. Water Res. 2021, 203, 117532. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, X.; Shan, Y.; Wu, C.; Zhou, R.; Hengl, N.; Pignon, F.; Jin, Y. Pre-ozonation coupled with forward osmosis with fertilizer as draw solution for simultaneous waste-water treatment and agricultural irrigation. Desalination 2024, 592, 118187. [Google Scholar] [CrossRef]
- Trotta, V.; Baaloudj, O.; Brienza, M. Risks associated with wastewater reuse in agriculture: Investigating the effects of contaminants in soil, plants, and insects. Front. Environ. Sci. 2024, 12, 1358842. [Google Scholar] [CrossRef]
- Domiciano, L.F.; Santos, M.L.; Boote, K.J.; Santos, P.M.; Pereira, D.H.; Pedreira, B.C. Physiological responses and forage accumulation of Marandu palisadegrass and Mombaça guineagrass to nitrogen fertilizer in the Brazilian forage-based sytem. Grassl. Sci. 2020, 67, 93–101. [Google Scholar] [CrossRef]
- Gurgel, P.E.; Sorzoli, N.; Ueno, A.C.; Ghersa, C.M.; Seal, C.E.; Bastías, D.A.; Ghersa, M.A.M. Impact of ozone on the viability and antioxidant content of grass seeds is affected by a vertically transmitted symbiotic fungus. Environ. Exp. Bot. 2015, 113, 40–46. [Google Scholar] [CrossRef]
- Noor, H.; Min, S.; Khan, S.; Lin, W.; Ren, A.; Yu, S.; Ullah, S.Y.; Gao, Z. Different sowing methods increasing the yield and quality of soil water consumption of dryland winter wheat on the loess plateau of China. Appl. Ecol. Environ. Res. 2020, 18, 8285–8308. [Google Scholar] [CrossRef]
- Lage Filho, N.M.; Santos, A.C.; Silva, S.L.S.; Oliveira, J.V.C.; Macedo, V.H.M.; Cunha, A.M.Q.; Rêgo, A.C.; Cândido, E.P. Morphogenesis, structure, and tillering dynamics of tanzania grass under nitrogen fertilization in the Amazon Region. Grasses 2024, 3, 154–162. [Google Scholar] [CrossRef]
- Leal, V.N.; Santos, D.C.; Paim, T.P.; Santos, L.P.; Alves, E.M.; Claudio, F.L.; Calgaro Junior, G.; Fernandes, P.B.; Salviano, P.A.P. Economic results of forage species choice in crop—Livestock integrated systems. Agriculture 2023, 13, 637. [Google Scholar] [CrossRef]
- Muzzo, B.I.; Ramsey, R.D.; Villalba, J.J. Changes in climate and their implications for cattle nutrition and management. Climate 2025, 13, 1. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.O.; Miranda, A.G.S.; Silva, P.A.; Oliveira, J.T.; Cunha, F.F. Growth performance of sabia grass irrigated by drippers installed in subsurface. Agriengineering 2024, 6, 3443–3459. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Guimarães, P.T.G.; Alvarez, V.H. Recomendações para o Uso de Corretivos e Fertilizantes em Minas Gerais, 5th ed.; Editora SBCS: Viçosa, Brazil, 1999; 359p. [Google Scholar]
- Gomide, C.A.M.; Gomide, J.A. Morphogenesis of Panicum maximum Jacq. cultivars. Rev. Bras. Zootec. 2000, 29, 341–348. [Google Scholar] [CrossRef]
- Baungratz, A.R.; Borba, L.P.; Menezes, B.M.; Porsch, J.L.M.; Venturini, T.; Borquis, R.R.A.; Mesquita, E.E.; Valente, É.E.L.; Macedo, V.P. Nutrient characterization and mineral composition of aruana in a silvopastoral system with nitrogen fertilization. Grasses 2024, 3, 11–18. [Google Scholar] [CrossRef]
- Silva, E.A.; Silva, W.J.; Barreto, A.C.; Oliveira Junior, A.B.; Paes, J.M.V.; Ruas, J.R.M.; Queiroz, D.S. Dry matter yield, thermal sum and base temperatures in irrigated tropical forage plants. Rev. Bras. Zootec. 2012, 41, 574–582. [Google Scholar] [CrossRef]
- Jesus, F.L.F.; Sanches, A.C.; Souza, D.P.; Mendonça, F.C.; Silva, J.L.B.; Pacheco, A.B.; Lisboa, C.F.; Costa, M.S. Thermal time in nitrogen and boron application on irrigated Mombaça grass “Guinea grass”. Dyna 2021, 88, 78–84. [Google Scholar] [CrossRef]
- Rakness, K.; Gordon, G.; Langlais, B.; Masschelein, W.; Matsumoto, N.; Richard, Y.; Somiya, I. Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone Sci. Eng. 1996, 18, 209–229. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing, 4.4.2 Version; R Development Core Team: Vienna, Austria, 2023; Available online: www.r-project.org/ (accessed on 6 November 2024).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Premjit, Y.; Sruthi, N.U.; Pandiselvam, R.; Kothakota, A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1054–1085. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, C.; Zhou, D. Positive and negative effects of recirculating aquaculture water advanced oxidation: O3 and O3/UV treatments improved water quality but increased antibiotic resistance genes. Water Res. 2023, 235, 119835. [Google Scholar] [CrossRef]
- Costa, A.B.G.; Difante, G.S.; Campelo, B.A.M.; Gurgel, A.L.C.; Costa, C.M.; Theodoro, G.F.; Silva, Á.T.A.; Emerenciano Neto, J.V.; Dias, A.M.; Fernandes, P.B. Morphogenetic, structural and production traits of marandu grass under nitrogen rates in Neo soil. Arq. Bras. Med. Vet. Zootec. 2021, 73, 658–664. [Google Scholar] [CrossRef]
- Lage Filho, N.M.; Lopes, A.R.; Rêgo, A.C.; Domingues, F.N.; Faturi, C.; Silva, T.C.; Cândido, E.P.; Silva, W.L. Effects of stubble height and season of the year on morphogenetic, structural and quantitative traits of Tanzania grass. Trop. Grassl.—Forrajes Trop. 2021, 9, 256–267. [Google Scholar] [CrossRef]
- Cunha, F.F.; Soares, A.A.; Pereira, O.G.; Lambertucci, D.M.; Abreu, F.V.S. Morphogenetic characteristics and tillering of irrigated Panicum maximum Jacq. cv. Tanzania. Cienc. Agrotec. 2007, 31, 628–635. [Google Scholar] [CrossRef]
- Araújo, R.A.S.; Cunha, F.F.; Wendling, I.J.; Silva, C.F.; Calazani, W.R.; Emerick, J.A.N. Morphogenesis and growth of the marandu grass intercropped with coconut under irrigation and grazed intervals. Biosci. J. 2011, 27, 856–864. [Google Scholar]
- Cunha, F.F.; Ramos, M.M.; Alencar, C.A.B.; Oliveira, R.A.; Araujo, R.A.S.; Cecon, P.R.; Martins, C.E.; Coser, A.C. Leaf numbers of xaraes grass in different management and rates of fertilization, rest periods and annual seasons. Biosci. J. 2011, 27, 271–282. [Google Scholar]
- Paciullo, D.S.C.; Gomide, C.A.M.; Castro, C.R.T.; Maurício, R.M.; Fernandes, P.B.; Morenz, M.J.F. Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. Grass Forage Sci. 2016, 72, 590–600. [Google Scholar] [CrossRef]
- Camargo, F.C.; Difante, G.S.; Montagner, D.B.; Euclides, V.P.B.; Taira, C.A.Q.; Gurgel, A.L.C.; Souza, D.L. Morphogenetic and structural traits of Ipyporã grass subjected to nitrogen fertilization rates under intermittent grazing. Cienc. Rural 2022, 52, e20201074. [Google Scholar] [CrossRef]
- Abreu, M.J.I.; Paula, P.R.P.; Tavares, V.B.; Cidrini, I.A.; Nunes, H.O.; Emiliano, W.J.C.; Souza, W.L.; Coelho, R.M.; Neiva Júnior, A.P.; Tomaz, C.E.P. Morfogênese, características estruturais e acúmulo de forragem do Megathyrsus maximus BRS Zuri submetido a adubação nitrogenada. Bol. Ind. Anim. 2020, 77, 1486. [Google Scholar] [CrossRef]
- Alencar, C.A.B.; Coser, A.C.; Martins, C.E.; Oliveira, R.A.; Cunha, F.F.; Figueiredo, J.L.A. Grass height and soil cover under nitrogen fertilization, irrigation and grazing during the seasons of the year. Acta Sci. Agron. 2010, 32, 21–27. [Google Scholar] [CrossRef]
- Cunha, F.F.; Ramos, M.M.; Alencar, C.A.B.; Martins, C.E.; Coser, A.C.; Oliveira, R.A. Root system of six irrigated grasses under different nitrogen fertilization and management. Acta Sci. Agron. 2010, 32, 351–357. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, S.; Zhang, L.; Yang, J.; Wang, Z.; Ma, F.; Li, M. Carbohydrate metabolism and transport in apple roots under nitrogen deficiency. Plant Physiol. Biochem. 2020, 155, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, J.; Chen, R.; Chen, J.; Zong, J.; Li, L.; Hao, D.; Guo, H. Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses. Plant Sci. 2024, 342, 112054. [Google Scholar] [CrossRef] [PubMed]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and soil microbial community: A review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Jiang, L.; Cheng, H.; Peng, Y.; Sun, T.; Gao, Y.; Wang, R.; Ma, Y.; Yang, J.; Yu, Q.; Zhang, H.; et al. Relative role of soil nutrients vs. carbon availability on soil carbon mineralization in grassland receiving long-term N addition. Soil Till. Res. 2024, 235, 105864. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, S.; Feng, J.; Li, D.; Yang, S.; Zhou, X. Suitable water–fertilizer management and ozone synergy can enhance substrate-based lettuce yield and water–fertilizer use efficiency. Agronomy 2024, 14, 1619. [Google Scholar] [CrossRef]
- Li, P.; Zhou, H.; Xu, Y.; Shang, B.; Feng, Z. The effects of elevated ozone on the accumulation and allocation of poplar biomass depend strongly on water and nitrogen availability. Sci. Total Environ. 2019, 665, 929–936. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Cadenas, A.G. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2017, 162, 2–12. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Lin, G.; Wang, Y.; Liu, Y.; Zhang, M.; Zhou, J.; Wang, Z.; Zhang, Y. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef]
- Yang, D.; Guan, K.; Liu, Y.; Cui, Y.; Ding, M.; Wang, L.; Han, L.; Wang, P.; Kang, P.; Wang, C. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize. Acta Agron. Sin. 2019, 45, 443–459. [Google Scholar] [CrossRef]
Variable | Cycle | Mean Square | CV | Fert. | O3 | |||
---|---|---|---|---|---|---|---|---|
O3 | Fert. | O3 × Fert. | (%) | No | Yes | |||
NEmL | 1 | 1.13 × 10−1 ns | 1.25 × 10−2 ns | 1.25 × 10−2 ns | 20.12 | No | 2.200 Aa | 2.400 Aa |
Yes | 2.300 Aa | 2.400 Aa | ||||||
2 | 1.25 × 10−2 ns | 6.13 × 10−1 ** | 1.25 × 10−2 ns | 11.23 | No | 1.600 Ab | 1.500 Ab | |
Yes | 1.900 Aa | 1.900 Aa | ||||||
3 | 1.25 × 10−2 ns | 1.13 × 10−1 ns | 1.13 × 10−1 ns | 23.12 | No | 1.700 Aa | 1.500 Aa | |
Yes | 1.700 Aa | 1.800 Aa | ||||||
NExL | 1 | 1.13 × 10−1 * | 1.01 × 100 ns | 1.13 × 10−1 * | 15.97 | No | 2.100 Ba | 2.400 Aa |
Yes | 2.700 Aa | 2.700 Aa | ||||||
2 | 8.00 × 10−1 ** | 1.85 × 10−5 ns | 2.00 × 10−1 ** | 14.55 | No | 1.600 Ba | 2.200 Aa | |
Yes | 1.800 Aa | 2.000 Aa | ||||||
3 | 4.00 × 10−5 ns | 8.00 × 10−1 * | 2.00 × 10−1 * | 23.57 | No | 1.200 Ab | 1.400 Aa | |
Yes | 1.800 Aa | 1.600 Aa | ||||||
NLL | 1 | 4.50 × 10−1 * | 1.25 × 100 ns | 2.00 × 10−1 * | 10.80 | No | 4.300 Ba | 4.800 Aa |
Yes | 5.000 Aa | 5.100 Aa | ||||||
2 | 6.13 × 10−1 * | 6.13 × 10−1 * | 1.13 × 10−1 * | 8.72 | No | 3.200 Bb | 3.700 Aa | |
Yes | 3.700 Aa | 3.900 Aa | ||||||
3 | 1.25 × 10−2 ns | 1.25 × 10−2 ** | 1.51 × 100 ns | 8.26 | No | 2.900 Ab | 2.900 Ab | |
Yes | 3.500 Aa | 3.400 Aa | ||||||
LAR (leaves tiller−1 day−1) | 1 | 6.49 × 10−4 ns | 2.34 × 10−4 ns | 2.34 × 10−4 ns | 11.03 | No | 0.136 Aa | 0.141 Aa |
Yes | 0.136 Aa | 0.155 Aa | ||||||
2 | 3.14 × 10−4 ns | 3.14 × 10−4 ns | 3.14 × 10−5 ns | 20.39 | No | 0.105 Aa | 0.111 Aa | |
Yes | 0.111 Aa | 0.121 Aa | ||||||
3 | 1.10 × 10−4 ns | 2.83 × 10−3 ** | 6.51 × 10−5 ** | 11.98 | No | 0.090 Ab | 0.086 Ab | |
Yes | 0.114 Aa | 0.110 Aa | ||||||
LER (cm tiller−1 day−1) | 1 | 3.49 × 10−1 ns | 6.10 × 100 ** | 4.09 × 10−2 ns | 17.68 | No | 3.203 Ab | 3.030 Ab |
Yes | 4.398 Aa | 4.044 Aa | ||||||
2 | 2.44 × 10−1 ns | 1.78 × 100 ** | 6.37 × 10−4 ns | 16.09 | No | 2.211 Ab | 2.443 Ab | |
Yes | 2.819 Aa | 3.028 Aa | ||||||
3 | 3.07 × 10−3 ns | 1.41 × 100 ** | 4.50 × 10−1 * | 19.47 | No | 1.562 Ab | 1.887 Aa | |
Yes | 2.393 Aa | 2.118 Aa | ||||||
SER (cm tiller−1 day−1) | 1 | 3.01 × 10−3 ns | 2.55 × 10−2 ** | 3.48 × 10−3 * | 19.91 | No | 0.162 Aa | 0.170 Ab |
Yes | 0.227 Aa | 0.268 Aa | ||||||
2 | 1.80 × 10−4 ns | 1.32 × 10−2 * | 3.26 × 10−3 * | 27.01 | No | 0.166 Aa | 0.134 Ab | |
Yes | 0.192 Aa | 0.211 Aa | ||||||
3 | 2.58 × 10−5 ns | 1.02 × 10−3 ns | 2.58 × 10−5 ns | 17.23 | No | 0.148 Aa | 0.148 Aa | |
Yes | 0.160 Aa | 0.164 Aa |
Variable | Cycle | Mean Square | CV | Fert. | O3 | |||
---|---|---|---|---|---|---|---|---|
O3 | Fert. | O3 × Fert. | (%) | No | Yes | |||
WC (L pot−1) | 1 | 2.21 × 10−4 * | 4.29 × 100 ** | 4.53 × 10−1 ** | 3.92 | No | 4.330 Bb | 4.624 Ab |
Yes | 5.557 Aa | 5.249 Ba | ||||||
2 | 5.09 × 10−2 ns | 2.40 × 100 ** | 3.49 × 10−2 ns | 6.38 | No | 3.364 Ab | 3.179 Ab | |
Yes | 3.972 Aa | 3.955 Aa | ||||||
3 | 9.18 × 10−2 ns | 3.01 × 10−1 * | 4.56 × 10−2 * | 5.20 | No | 2.499 Ab | 2.730 Aa | |
Yes | 2.840 Aa | 2.880 Aa | ||||||
FSB (g pot−1) | 1 | 9.83 × 100 ns | 1.27 × 103 ** | 1.77 × 101 ns | 9.54 | No | 38.993 Ab | 39.475 Ab |
Yes | 56.841 Aa | 53.555 Aa | ||||||
2 | 1.71 × 100 ns | 3.32 × 103 ** | 6.53 × 100 ns | 6.96 | No | 16.079 Ab | 16.637 Ab | |
Yes | 42.994 Aa | 41.265 Aa | ||||||
3 | 2.89 × 100 * | 2.25 × 103 ** | 8.66 × 100 * | 5.68 | No | 9.025 Bb | 11.102 Ab | |
Yes | 31.558 Aa | 31.003 Aa | ||||||
DSB (g pot−1) | 1 | 8.59 × 10−1 ns | 7.54 × 101 ** | 6.60 × 10−1 ns | 7.40 | No | 9.692 Ab | 9.641 Ab |
Yes | 13.939 Aa | 13.161 Aa | ||||||
2 | 8.98 × 10−3 ns | 1.68 × 102 ** | 7.96 × 10−1 ns | 7.79 | No | 3.593 Ab | 3.950 Ab | |
Yes | 9.784 Aa | 9.343 Aa | ||||||
3 | 1.84 × 10−1 * | 1.00 × 102 ** | 5.26 × 10−1 ** | 5.51 | No | 1.749 Bb | 2.265 Ab | |
Yes | 6.545 Aa | 6.412 Aa | ||||||
WP (g L−1) | 1 | 3.06 × 10−2 ns | 6.17 × 10−1 ** | 2.71 × 10−2 ns | 7.72 | No | 2.237 Ab | 2.085 Ab |
Yes | 2.514 Aa | 2.510 Aa | ||||||
2 | 1.06 × 10−2 ns | 7.85 × 100 ** | 9.78 × 10−2 ns | 12.21 | No | 1.074 Ab | 1.259 Ab | |
Yes | 2.466 Aa | 2.372 Aa | ||||||
3 | 4.01 × 10−3 ns | 1.14 × 101 ** | 5.02 × 10−2 ns | 10.59 | No | 0.704 Ab | 0.832 Ab | |
Yes | 2.313 Aa | 2.241 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cançado, W.L.; Sitoe, E.d.P.E.; Oliveira, J.T.d.; Faroni, L.R.D.; Alencar, E.R.d.; Silva, M.V.d.A.; Cunha, F.F.d. Production of Panicum maximum cv. Mombaça Under Fertilization Management and Ozonation of Irrigation Water. Grasses 2025, 4, 11. https://doi.org/10.3390/grasses4010011
Cançado WL, Sitoe EdPE, Oliveira JTd, Faroni LRD, Alencar ERd, Silva MVdA, Cunha FFd. Production of Panicum maximum cv. Mombaça Under Fertilization Management and Ozonation of Irrigation Water. Grasses. 2025; 4(1):11. https://doi.org/10.3390/grasses4010011
Chicago/Turabian StyleCançado, Wesley Lopes, Eugénio da Piedade Edmundo Sitoe, Job Teixeira de Oliveira, Lêda Rita D’Antonino Faroni, Ernandes Rodrigues de Alencar, Marcus Vinicius de Assis Silva, and Fernando França da Cunha. 2025. "Production of Panicum maximum cv. Mombaça Under Fertilization Management and Ozonation of Irrigation Water" Grasses 4, no. 1: 11. https://doi.org/10.3390/grasses4010011
APA StyleCançado, W. L., Sitoe, E. d. P. E., Oliveira, J. T. d., Faroni, L. R. D., Alencar, E. R. d., Silva, M. V. d. A., & Cunha, F. F. d. (2025). Production of Panicum maximum cv. Mombaça Under Fertilization Management and Ozonation of Irrigation Water. Grasses, 4(1), 11. https://doi.org/10.3390/grasses4010011