Effects of Movement Representation Strategies on Cardiovascular Disease: A Literature Review
Abstract
:1. Introduction
2. Movement Representation Strategies and Autonomic System
3. Movement Representation Strategies on Cardiovascular Disease
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cowell, R.A.; Barense, M.D.; Sadil, P.S. A Roadmap for Understanding Memory: Decomposing Cognitive Processes into Operations and Representations. Eneuro 2019, 6, ENEURO.0122-19.2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, E.B. Sensación y Percepción, 8th ed.; Cengage: Mexico City, Mexico, 2011. [Google Scholar]
- Thieme, H.; Morkisch, N.; Rietz, C.; Dohle, C.; Borgetto, B. The efficacy of movement representation techniques for treatment of limb pain-A systematic review and meta-analysis. J. Pain 2016, 17, 167–180. [Google Scholar] [CrossRef]
- Beinert, K.; Preiss, S.; Huber, M.; Taube, W. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: A RCT. Eur. J. Phys. Rehabil. Med. 2015, 51, 825–832. [Google Scholar] [PubMed]
- Morales-Osorio, M.A.; Mejía, J.M. Imaginería Motora Graduada en el Síndrome de Miembro Fantasma con Dolor. Rev. Soc. Española Dolor 2012, 19, 209–216. [Google Scholar]
- Robin, N.; Dominique, L.; Toussaint, L.; Blandin, Y.; Guillot, A.; Her, M. Le Effects of motor imagery training on service return accuracy in tennis: The role of imagery ability. Int. J. Sport Exerc. Psychol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Lebon, F.; Collet, C.; Guillot, A. Benefits of Motor Imagery Training on Muscle Strength. J. Strength Cond. Res. 2010, 24, 1680–1687. [Google Scholar] [CrossRef]
- Decety, J. The neurophysiological basis of motor imagery. Behav. Brain Res. 1996, 77, 45–52. [Google Scholar] [CrossRef]
- Buccino, G. Action observation treatment: A novel tool in neurorehabilitation. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130185. [Google Scholar] [CrossRef] [Green Version]
- Lotze, M.; Montoya, P.; Erb, M.; Hülsmann, E.; Flor, H.; Klose, U.; Birbaumer, N.; Grodd, W. Activation of Cortical and Cerebellar Motor Areas during Executed and Imagined Hand Movements: An fMRI Study. J. Cogn. Neurosci. 1999, 11, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Taube, W.; Mouthon, M.; Leukel, C.; Hoogewoud, H.-M.; Annoni, J.-M.; Keller, M. Brain activity during observation and motor imagery of different balance tasks: An fMRI study. Cortex 2015, 64, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Guillot, A.; Collet, C. Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Res. Rev. 2005, 50, 387–397. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F.; Suso-Martí, L.; Sánchez-Martín, D.; Soria-Soria, C.; Serran-Santos, J.; Paris-Alemany, A.; La Touche, R.; León-Hernández, J.V. Effects of motor imagery and action observation on lumbo-pelvic motor control, trunk muscles strength and level of perceived fatigue: A randomized controlled trial. Res. Q. Exerc. Sport 2019, 9, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Heckman, C.J.; Enoka, R.M. Physiology of the motor neuron and the motor unit. In Handbook of Clinical Neurophysiology; Elsevier: Amsterdam, The Netherlands, 2004; pp. 119–147. [Google Scholar]
- Miller, K.J.; Schalk, G.; Fetz, E.E.; Den Nijs, M.; Ojemann, J.G.; Rao, R.P.N. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc. Natl. Acad. Sci. USA 2010, 107, 4430–4435. [Google Scholar] [CrossRef]
- Jeannerod, M. The representing brain: Neural correlates of motor intention and imagery. Behav. Brain Sci. 1994, 17, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Lebon, F.; Byblow, W.D.; Collet, C.; Guillot, A.; Stinear, C.M. The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur. J. Neurosci. 2012, 35, 323–331. [Google Scholar] [CrossRef]
- Vogt, S.; Di Rienzo, F.; Collet, C.; Collins, A.; Guillot, A. Multiple roles of motor imagery during action observation. Front. Hum. Neurosci. 2013, 7, 807. [Google Scholar] [CrossRef] [Green Version]
- Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A. Autonomic nervous system correlates in movement observation and motor imagery. Front. Hum. Neurosci. 2013, 7, 415. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-Martínez, F.; Suso-Martí, L.; Grande-Alonso, M.; Paris-Alemany, A.; La Touche, R. Combining motor imagery with action observation training does not lead to a greater autonomic nervous system response than motor imagery alone during simple and functional movements: A randomized controlled trial. PeerJ 2018, 6, e5142. [Google Scholar] [CrossRef]
- Decety, J.; Jeannerod, M.; Durozard, D.; Baverel, G. Central activation of autonomic effectors during mental simulation of motor actions in man. J. Physiol. 1993, 461, 549–563. [Google Scholar] [CrossRef]
- Vissing, S.F.; Hjortsø, E.M. Central motor command activates sympathetic outflow to the cutaneous circulation in humans. J. Physiol. 1996, 492, 931–939. [Google Scholar] [CrossRef]
- Shields, S.A.; MacDowell, K.A.; Fairchild, S.B.; Campbell, M.L. Is mediation of sweating cholinergic, adrenergic, or both? A comment on the literature. Psychophysiology 1987, 24, 312–319. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F.; Reina-Varona, Á.; Castillo-García, J.; La Touche, R.; Angulo-Díaz-Parreño, S.; Suso-Martí, L. Pain relief by movement representation strategies: An umbrella and mapping review with meta-meta-analysis of motor imagery, action observation and mirror therapy. Eur. J. Pain 2022, 26, 284–309. [Google Scholar] [CrossRef]
- Ferrer-Peña, R.; Cuenca-Martínez, F.; Romero-Palau, M.; Flores-Román, L.M.; Arce-Vázquez, P.; Varangot-Reille, C.; Suso-Martí, L. Effects of motor imagery on strength, range of motion, physical function, and pain intensity in patients with total knee arthroplasty: A systematic review and meta-analysis. Braz. J. Phys. Ther. 2021, 25, 698–708. [Google Scholar] [CrossRef]
- Herranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R.; Cuenca-Martínez, F. Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis. Neurosci. Biobehav. Rev. 2020, 118, 828–845. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F.; Angulo-Díaz-Parreño, S.; Feijóo-Rubio, X.; Fernández-Solís, M.M.; León-Hernández, J.V.; La Touche, R.; Suso-Martí, L. Motor effects of movement representation techniques and cross-education: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2022, 58, 94–107. [Google Scholar] [CrossRef]
- Suso-Martí, L.; La Touche, R.; Angulo-Díaz-Parreño, S.; Cuenca-Martínez, F. Effectiveness of motor imagery and action observation training on musculoskeletal pain intensity: A systematic review and meta-analysis. Eur. J. Pain 2020, 24, 886–901. [Google Scholar] [CrossRef]
- Li, R.; Du, J.; Yang, K.; Wang, X.; Wang, W. Effectiveness of motor imagery for improving functional performance after total knee arthroplasty: A systematic review with meta-analysis. J. Orthop. Surg. Res. 2022, 17, 65. [Google Scholar] [CrossRef]
- Benito-Villalvilla, D.; De Uralde-Villanueva, I.L.; Ríos-León, M.; Álvarez-Melcón, Á.C.; Martín-Casas, P. Effectiveness of motor imagery in patients with multiple sclerosis: A systematic review. Rev. Neurol. 2021, 72, 157–167. [Google Scholar]
- Gil-Bermejo-Bernardez-zerpa, A.; Moral-Munoz, J.A.; Lucena-Anton, D.; Luque-Moreno, C. Effectiveness of Motor Imagery on Motor Recovery in Patients with Multiple Sclerosis: Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 498. [Google Scholar] [CrossRef]
- López, N.D.; Monge Pereira, E.; Centeno, E.J.; Miangolarra Page, J.C. Motor imagery as a complementary technique for functional recovery after stroke: A systematic review. Top. Stroke Rehabil. 2019, 26, 576–587. [Google Scholar] [CrossRef]
- Fernández-Gómez, E.; Sánchez-Cabeza, Á. Motor imagery: A systematic review of its effectiveness in the rehabilitation of the upper limb following a stroke. Rev. Neurol. 2018, 66, 137–146. [Google Scholar] [PubMed]
- Monteiro, K.B.; dos Santos Cardoso, M.; da Costa Cabral, V.R.; Dos Santos AO, B.; da Silva, P.S.; de Castro JB, P.; de Souza Vale, R.G. Effects of Motor Imagery as a Complementary Resource on the Rehabilitation of Stroke Patients: A Meta-Analysis of Randomized Trials. J. Stroke Cerebrovasc. Dis. 2021, 30, 105876. [Google Scholar] [CrossRef] [PubMed]
- Kho, A.Y.; Liu, K.P.Y.; Chung, R.C.K. Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function. Aust. Occup. Ther. J. 2014, 61, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Opsommer, E.; Chevalley, O.; Korogod, N. Motor imagery for pain and motor function after spinal cord injury: A systematic review. Spinal Cord 2019, 58, 262–274. [Google Scholar] [CrossRef]
- Behrendt, F.; Zumbrunnen, V.; Brem, L.; Suica, Z.; Gäumann, S.; Ziller, C.; Gerth, U.; Schuster-Amft, C. Effect of Motor Imagery Training on Motor Learning in Children and Adolescents: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 9467. [Google Scholar] [CrossRef]
- Paravlic, A.H.; Slimani, M.; Tod, D.; Marusic, U.; Milanovic, Z.; Pisot, R. Effects and Dose-Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: A Systematic Review and Meta-analysis. Sport. Med. 2018, 48, 1165–1187. [Google Scholar] [CrossRef]
- De Souza, N.S.; Martins, A.C.G.; dos Santo Samary, C.; Leite, M.A.; do Vale Bastos, V.H. The Use of Motor Imagery in Modulating Cardiopulmonary Activity: Future Perspectives. Acta Neuropsychol. 2019, 1, 180102. [Google Scholar]
- de Souza, N.S.; Martins, A.C.G.; de Assis, K.M.; de Oliveira, L.B.; de Abreu, R.F.S.; Araújo-Leite, M.A.; Neves, M.A.O.; dos Santos Moraes Nunes, N.; do Vale Bastos, V.H.; Silva, J.G.; et al. Study of the effects of kinesthetic motor imagery in patients with heart failure. Rev. Da Assoc. Med. Bras. 2021, 67, 661–666. [Google Scholar] [CrossRef]
Authors | Population (Condition) | Interventions | Study Design | Results |
---|---|---|---|---|
Suso-Martí et al. [28] | Patients with musculoskeletal pain (musculoskeletal) | AO or MI + UC vs. UC | Systematic review and Meta-analysis | AO or MI + UC are capable of producing a decrease in pain intensity compared with UC, in both post-surgical and chronic pain. |
Cuenca-Martínez et al. [24] | Patients with musculoskeletal pain (musculoskeletal) and patients with phantom limb pain and poststroke pain (neurological) | AO, MI, or MT + UC vs. UC | Umbrella review with Meta-meta-analysis | Results show that mental practice could be effective for chronic musculoskeletal pain. However, the results did not show a reduction in pain intensity in patients with phantom limb pain or poststroke pain. |
Ferrer-Peña et al. [25] | Patients with total knee arthroplasty (musculoskeletal) | MI + UC vs. UC | Systematic review and Meta-analysis | Adding an MI to UC improved quadriceps strength and pain intensity, but the effects on range of motion and physical function was unclear. |
Li et al. [29] | Patients with total knee arthroplasty (musculoskeletal) | MI + UC vs. UC | Systematic review and Meta-analysis | MI + UC achieved an effective treatment for strength enhancement, pain reduction and physical activities improvement. |
Herranz-Gómez et al. [26] | Stroke patients (neurological) | AO or MI + UC vs. UC | Umbrella review with Meta-meta-analysis | MI and AO showed positive results for improving functional variables. |
Benito-Villalvilla et al. [30] | Patients with multiple sclerosis (neurological) | AO, MI, or MT + UC vs. UC or no intervention | Systematic review | MI + exercises showed to be effective in the treatment of fatigue, gait, balance, depression, and quality of life. AO was useful in upper limb rehabilitation and improvement in attention, executive control, and activation of sensorimotor networks. |
Gil-Bermejo-Bernardez-Zerpa et al. [31] | Patients with multiple sclerosis (neurological) | MI + UC vs. UC or no intervention | Systematic review | MI showed improvements in walking speed and distance, fatigue, and quality of life. In addition, several benefits were also found in dynamic balance and perceived walking ability. |
Díaz-López et al. [32] | Stroke patients (neurological) | MI + UC vs. UC or no intervention | Systematic review | MI + UC was an effective method for the recovery of functionality after stroke. |
Fernández-Gómez and Sánchez-Cabeza [33] | Stroke patients (neurological) | MI + UC vs. UC or no intervention | Systematic review | MI, combined with conventional therapy, showed positive effects on the motor rehabilitation of the upper limb following a stroke. |
Barreto-Monteiro et al. [34] | Stroke patients (neurological) | MI + UC vs. UC | Systematic review and Meta-analysis | MI has been shown to be an efficacious technique in the treatment of post-stroke patients when used as a complement to UC. |
Kho et al. [35] | Stroke patients (neurological) | MI + UC vs. UC | Systematic review and Meta-analysis | Review of the literature revealed a trend in support of the use of MI for upper extremity motor rehabilitation after stroke. |
Opsommer et al. [36] | Patients with spinal cord injury (neurological) | MI + other interventions vs. control | Systematic review | In most, results were an improvement in motor function and decreased pain. |
Behrendt et al. [37] | Children and adolescents (healthy and neurological) | MI + physical practice vs. physical practice | Systematic review and Meta-analysis | MI combined with physical practice might have a high potential for healthy and impaired children and adolescents. |
Paravlic et al. [38] | Adults (healthy) | MI alone; MI alone vs. physical practice and MI + physical practice vs. physical practice | Systematic review and Meta-analysis | Results showed that compared to a no-exercise control group of healthy adults, MI practice increases maximal voluntary strength, but less than physical practice. |
Liu et al. [38] | Young and old adults (healthy) | MI alone; MI alone vs. physical practice and MI + physical practice vs. physical practice | Systematic review and Meta-analysis | Results showed that MI has better estimated effects on enhancing maximum voluntary muscle contraction force compared to no exercise but is inferior to physical practice. The combination of MI + physical practice is equivalent to physical practice in isolation in enhancing muscle strength. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuenca-Martínez, F.; Muñoz-Gómez, E.; Mollà-Casanova, S.; Sempere-Rubio, N. Effects of Movement Representation Strategies on Cardiovascular Disease: A Literature Review. J. Vasc. Dis. 2023, 2, 259-265. https://doi.org/10.3390/jvd2030019
Cuenca-Martínez F, Muñoz-Gómez E, Mollà-Casanova S, Sempere-Rubio N. Effects of Movement Representation Strategies on Cardiovascular Disease: A Literature Review. Journal of Vascular Diseases. 2023; 2(3):259-265. https://doi.org/10.3390/jvd2030019
Chicago/Turabian StyleCuenca-Martínez, Ferran, Elena Muñoz-Gómez, Sara Mollà-Casanova, and Núria Sempere-Rubio. 2023. "Effects of Movement Representation Strategies on Cardiovascular Disease: A Literature Review" Journal of Vascular Diseases 2, no. 3: 259-265. https://doi.org/10.3390/jvd2030019
APA StyleCuenca-Martínez, F., Muñoz-Gómez, E., Mollà-Casanova, S., & Sempere-Rubio, N. (2023). Effects of Movement Representation Strategies on Cardiovascular Disease: A Literature Review. Journal of Vascular Diseases, 2(3), 259-265. https://doi.org/10.3390/jvd2030019